首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, a finite element (FE)/fast multipole boundary element (FMBE)‐coupling method is presented for modeling fluid–structure interaction problems numerically. Vibrating structures are assumed to consist of elastic or sound absorbing materials. An FE method (FEM) is used for this part of the solution. This structural sub‐domain is embedded in a homogeneous fluid. The case where the boundary of the structural sub‐domain has a very complex geometry is of special interest. In this case, the BE method (BEM) is a more suitable numerical tool than FEM to account for the sound propagation in the homogeneous fluid. The efficiency of the BEM is increased by using FMBEM. The BE‐surface mesh required is directly generated by the FE‐mesh used to discretize the structural sub‐domain and the absorbing material. This FE/FMBE‐coupling method makes it possible to predict the effects of arbitrarily shaped absorbing materials and vibrating structures on the sound field in the surrounding fluid numerically. The coupling method proposed is used to study the acoustic behavior of the lining of an anechoic chamber and that of an entire anechoic chamber in the low‐frequency range. The numerical results obtained are compared with the experimental data. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
Coupled finite and boundary element methods for solving transient fluid–structure interaction problems are developed. The finite element method is used to model the radiating structure, and the boundary element method (BEM) is used to determine the resulting acoustic field. The well‐known stability problems of time domain BEMs are avoided by using a Burton–Miller‐type integral equation. The stability, accuracy and efficiency of two alternative solution methods are compared using an exact solution for the case of a thin spherical elastic shell. The convergence properties of the preferred solution method are then investigated more thoroughly. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
A new comprehensive acoustic 2-D interface element capable of coupling the boundary element (BE) and finite element (FE) discretizations has been formulated for fluid–structure interaction problems. The Helmholtz equation governing the acoustic pressure in a fluid is discretized using the BE method and coupled to the FE discretization of a vibrating structure that is in contact with the fluid. Since the BE method naturally maps the infinite fluid domain into finite node points on the fluid–structure interface, the formulation is especially useful for problems where the fluid domain extends to infinity. Details of the BE matrix computation process adapted to FE code architecture are included for easy incorporation of the interface element in FE codes. The interface element has been used to solve a few simple fluid–structure problems to demonstrate the validity of the formulation. Also, the vibration response of a submerged cylindrical shell has been computed and compared with the results from an entirely finite element formulation.  相似文献   

4.
In the present paper, a scheme is developed for the coupled FE/BE analysis of a plate–foundation interaction problem, in which the boundary element equations of the foundation are not explicitly assembled with the finite element equations of the plate, but instead an iterative procedure is proposed to obtain the final coupled solution. This iterative scheme preserves the nature of the BE and FE approaches and the coupled procedure can be easily implemented within an integrated FEM/BEM software environment. The scheme also reduces the computer storage requirement and avoids the error introduced by symmetrization of the BE equations. In addition, some important issues related to the scheme, such as convergence conditions and parameter selection, are discussed. A numerical example is provided to illustrate pthe benefits of the scheme. It is noted, however, that the overall performance of the proposed scheme when compared with the conventional direct solution of the unsymmetric equations arising from the explicit coupling of the FE and BE equations, depends on the choice of a free parameter and a matrix contained in the scheme.  相似文献   

5.
In this paper, a coupled model based on finite element method (FEM), boundary element method (BEM) and scaled boundary FEM (SBFEM) (also referred to as the consistent infinitesimal finite element cell method) for dynamic response of 2D structures resting on layered soil media is presented. The SBFEM proposed by Wolf and Song (Finite‐element Modelling of Unbounded Media. Wiley: England, 1996) and BEM are used for modelling the dynamic response of the unbounded media (far‐field). The standard FEM is used for modelling the finite region (near‐field) and the structure. In SBFEM, which is a semi‐analytical technique, the radiation condition at infinity is satisfied exactly without requiring the fundamental solution. This method, also eliminates the need for the discretization of interfaces between different layers. In both SBFEM and BEM, the spatial dimension is decreased by one. The objective of the development of this coupled model is to combine advantages of above‐mentioned three numerical models to solve various soil–structure interaction (SSI) problems efficiently and effectively. These three methods are coupled (FE–BE–SBFEM) via substructuring method, and a computer programme is developed for the harmonic analyses of SSI systems. The coupled model is established in such a way that, depending upon the problem and far‐field properties, one can choose BEM and/or SBFEM in modelling related far‐field region(s). Thus, BEM and/or SBFEM can be used efficiently in modelling the far‐field. The proposed model is applied to investigate dynamic response of rigid and elastic structures resting on layered soil media. To assess the proposed SSI model, several problems existing in the literature are chosen and analysed. The results of the proposed model agree with the results presented in the literature for the chosen problems. The advantages of the model are demonstrated through these comparisons. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

6.
A coupled finite element–boundary element analysis method for the solution of transient two‐dimensional heat conduction equations involving dissimilar materials and geometric discontinuities is developed. Along the interfaces between different material regions of the domain, temperature continuity and energy balance are enforced directly. Also, a special algorithm is implemented in the boundary element method (BEM) to treat the existence of corners of arbitrary angles along the boundary of the domain. Unknown interface fluxes are expressed in terms of unknown interface temperatures by using the boundary element method for each material region of the domain. Energy balance and temperature continuity are used for the solution of unknown interface temperatures leading to a complete set of boundary conditions in each region, thus allowing the solution of the remaining unknown boundary quantities. The concepts developed for the BEM formulation of a domain with dissimilar regions is employed in the finite element–boundary element coupling procedure. Along the common boundaries of FEM–BEM regions, fluxes from specific BEM regions are expressed in terms of common boundary (interface) temperatures, then integrated and lumped at the nodal points of the common FEM–BEM boundary so that they are treated as boundary conditions in the analysis of finite element method (FEM) regions along the common FEM–BEM boundary. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

7.
The paper introduces a weighted residual‐based approach for the numerical investigation of the interaction of fluid flow and thin flexible structures. The presented method enables one to treat strongly coupled systems involving large structural motion and deformation of multiple‐flow‐immersed solid objects. The fluid flow is described by the incompressible Navier–Stokes equations. The current configuration of the thin structure of linear elastic material with non‐linear kinematics is mapped to the flow using the zero iso‐contour of an updated level set function. The formulation of fluid, structure and coupling conditions uniformly uses velocities as unknowns. The integration of the weak form is performed on a space–time finite element discretization of the domain. Interfacial constraints of the multi‐field problem are ensured by distributed Lagrange multipliers. The proposed formulation and discretization techniques lead to a monolithic algebraic system, well suited for strongly coupled fluid–structure systems. Embedding a thin structure into a flow results in non‐smooth fields for the fluid. Based on the concept of the extended finite element method, the space–time approximations of fluid pressure and velocity are properly enriched to capture weakly and strongly discontinuous solutions. This leads to the present enriched space–time (EST) method. Numerical examples of fluid–structure interaction show the eligibility of the developed numerical approach in order to describe the behavior of such coupled systems. The test cases demonstrate the application of the proposed technique to problems where mesh moving strategies often fail. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
The edge-based smoothed finite element method (ES-FEM) developed recently shows some excellent features in solving solid mechanics problems using triangular mesh. In this paper, a coupled ES-FEM/BEM method is proposed to analyze acoustic fluid–structure interaction problems, where the ES-FEM is used to model the structure, while the acoustic fluid is represented by boundary element method (BEM). Three-node triangular elements are used to discretize the structural and acoustic fluid domains for the important adaptability to complicated geometries. The smoothed Galerkin weak form is adopted to formulate the discretized equations for the structure, and the gradient smoothing operation is applied over the edge-based smoothing domains. The global equations of acoustic fluid–structure interaction problems are then established by coupling the ES-FEM for the structure and the BEM for the fluid. The gradient smoothing technique applied in the structural domain can provide the important and right amount of softening effects to the “overly-stiff” FEM model and thus improve the accuracy of the solutions of coupled system. Numerical examples of acoustic fluid–structure interaction problems have been used to assess the present formulation, and the results show that the accuracy of present method is very good and even higher than those obtained using the coupled FEM/BEM with quadrilateral mesh.  相似文献   

9.
A coupled symmetric BE–FE method for the calculation of linear acoustic fluid–structure interaction in time and frequency domain is presented. In the coupling formulation a newly developed hybrid boundary element method (HBEM) will be used to describe the behaviour of the compressible fluid. The HBEM is based on Hamilton's principle formulated with the velocity potential. The state variables are separated into boundary variables which are approximated by piecewise polynomial functions and domain variables which are approximated by a superposition of static fundamental solutions. The domain integrals are eliminated, respectively, replaced by boundary integrals and a boundary element formulation with a symmetric mass and stiffness matrix is obtained as result. The structure is discretized by FEM. The coupling conditions fulfil C1-continuity on the interface. The coupled formulation can also be used for eigenfrequency analyses by transforming it from time domain into frequency domain.  相似文献   

10.
This study concerns the development of a coupled finite element–boundary element analysis method for the solution of thermoelastic stresses in a domain composed of dissimilar materials with geometric discontinuities. The continuity of displacement and traction components is enforced directly along the interfaces between different material regions of the domain. The presence of material and geometric discontinuities are included in the formulation explicitly. The unknown interface traction components are expressed in terms of unknown interface displacement components by using the boundary element method for each material region of the domain. Enforcing the continuity conditions leads to a final system of equations containing unknown interface displacement components only. With the solution of interface displacement components, each region has a complete set of boundary conditions, thus leading to the solution of the remaining unknown boundary quantities. The concepts developed for the BEM formulation of a domain with dissimilar regions is employed in the finite element–boundary element coupling procedure. Along the common boundaries of FEM–BEM regions, stresses from specific BEM regions are first expressed in terms of interface displacements, then integrated and lumped at the nodal points of the common FEM–BEM boundary so that they are treated as boundary conditions in the analysis of FEM regions along the common FEM–BEM boundary. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

11.
To predict the vibro‐acoustic behavior of structures, both a structural problem and an acoustic problem have to be solved. For thin structures immersed in water, a strong interaction between the structural domain and fluid domain occurs. This significantly alters the resonance frequencies. In this work, the structure is modeled by the finite element method. The exterior acoustic problem is solved by a fast boundary element method employing hierarchical matrices. An FE‐BE formulation is presented, which allows the solution of the coupled eigenvalue problem and thus the prediction of the coupled eigenfrequencies and mode shapes. It is based on a Schur complement formulation of the FE‐BE system yielding a generalized eigenvalue problem. A Krylov–Schur solver is applied for its efficient solution. Hereby, the compressibility of the fluid is neglected. The coupled eigensolution is then used for a model reduction strategy allowing fast frequency sweep calculations. The efficiency of the proposed formulations is investigated with respect to memory consumption, accuracy, and computation time. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
The eigenanalysis of acoustical cavities with flexible structure boundaries, such as a fluid-filled container or an automobile cabin enclosure, is considered. An algebraic eigenvalue problem formulation for the fluid–structure problem is presented by combining the acoustic fluid boundary element eigenvalue analysis method and the structural finite elements. For many practical eigenproblems, use of finite elements to discretize the fluid domain leads to large stiffness and mass matrices. Since the acoustic boundary element discretization requires putting nodes only on the wetted surface of the structure, the size of the eigenproblem is reduced considerably, thus reducing the eigenvalue extraction effort. Futhermore, unlike in ordinary cases, the finite element discretization of pressure–displacement based fluid–structure problem gives rise to unsymmetric matrices. Therefore, the fact that the boundary element formulation produces unsymmetric matrices does not introduce additional difficulties here compared to the finite element case in the choice of an eigenvalue extraction procedure. Examples are included to demonstrate the fluid–structure eigenanalysis using boundary elements for the fluid domain and finite elements for the structure.  相似文献   

13.
A coupled BEM–FEM methodology is presented for 3D wave propagation and soil–structure interaction analysis in the direct time domain. The employed boundary element method (BEM) uses a new generation of the Stokes fundamental solutions that utilize the B-Spline family of polynomials. A standard finite element methodology for dynamic analysis along with direct integration in time is coupled to the BEM through a staggered solution approach. Each method provides initial conditions to the other at the beginning of each time step. Formulation and computational aspects of the proposed coupling scheme are discussed. A number of numerical examples are presented for the validation and demonstration of the general nature of the proposed methodology.  相似文献   

14.
We propose a robust immersed finite element method in which an integral equation formulation is used to enforce essential boundary conditions. The solution of a boundary value problem is expressed as the superposition of a finite element solution and an integral equation solution. For computing the finite element solution, the physical domain is embedded into a slightly larger Cartesian (box‐shaped) domain and is discretized using a block‐structured mesh. The defect in the essential boundary conditions, which occurs along the physical domain boundaries, is subsequently corrected with an integral equation method. In order to facilitate the mapping between the finite element and integral equation solutions, the physical domain boundary is represented with a signed distance function on the block‐structured mesh. As a result, only a boundary mesh of the physical domain is necessary and no domain mesh needs to be generated, except for the non‐boundary‐conforming block‐structured mesh. The overall approach is first presented for the Poisson equation and then generalized to incompressible viscous flow equations. As an example of fluid–structure coupling, the settling of a heavy rigid particle in a closed tank is considered. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
In finite element formulations for poroelastic continua a representation of Biot's theory using the unknowns solid displacement and pore pressure is preferred. Such a formulation is possible either for quasi‐static problems or for dynamic problems if the inertia effects of the fluid are neglected. Contrary to these formulations a boundary element method (BEM) for the general case of Biot's theory in time domain has been published (Wave Propagation in Viscoelastic and Poroelastic Continua: A Boundary Element Approach. Lecture Notes in Applied Mechanics. Springer: Berlin, Heidelberg, New York, 2001.). If the advantages of both methods are required it is common practice to couple both methods. However, for such a coupled FE/BE procedure a BEM for the simplified dynamic Biot theory as used in FEM must be developed. Therefore, here, the fundamental solutions as well as a BE time stepping procedure is presented for the simplified dynamic theory where the inertia effects of the fluid are neglected. Further, a semi‐analytical one‐dimensional solution is presented to check the proposed BE formulation. Finally, wave propagation problems are studied using either the complete Biot theory as well as the simplified theory. These examples show that no significant differences occur for the selected material. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
This paper describes a new computational model developed to solve two‐dimensional incompressible viscous flow problems in external flow fields. The model based on the Navier–Stokes equations in primitive variables is able to solve the infinite boundary value problems by extracting the boundary effects on a specified finite computational domain, using the pressure projection method. The external flow field is simulated using the boundary element method by solving a pressure Poisson equation that assumes the pressure as zero at the infinite boundary. The momentum equation of the flow motion is solved using the three‐step finite element method. The arbitrary Lagrangian–Eulerian method is incorporated into the model, to solve the moving boundary problems. The present model is applied to simulate various external flow problems like flow across circular cylinder, acceleration and deceleration of the circular cylinder moving in a still fluid and vibration of the circular cylinder induced by the vortex shedding. The simulation results are found to be very reasonable and satisfactory. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

17.
A direct boundary element method (BEM) is developed for the determination of the time-dependent inelastic deflection of plates of arbitrary planform and under arbitrary boundary conditions to general lateral loading history. The governing differential equation is the nonhomogeneous biharmonic equation for the rate of small transverse deflection. The boundary integral formulation is derived by using a combination of the BEM and finite element methodology. The plate material is modelled as elastic-viscoplastic. Numerical examples for sample problems are presented to illustrate the method and to demonstrate its merits.  相似文献   

18.
The meshless local Petrov–Galerkin (MLPG) method is an effective truly meshless method for solving partial differential equations using moving least squares (MLS) interpolants. It is, however, computationally expensive for some problems. A coupled MLPG/finite element (FE) method and a coupled MLPG/boundary element (BE) method are proposed in this paper to improve the solution efficiency. A procedure is developed for the coupled MLPG/FE method and the coupled MLPG/BE method so that the continuity and compatibility are preserved on the interface of the two domains where the MLPG and FE or BE methods are applied. The validity and efficiency of the MLPG/FE and MLPG/BE methods are demonstrated through a number of examples. Received 6 June 2000  相似文献   

19.
A fast multipole boundary element method (BEM) for solving general uncoupled steady-state thermoelasticity problems in two dimensions is presented in this paper. The fast multipole BEM is developed to handle the thermal term in the thermoelasticity boundary integral equation involving temperature and heat flux distributions on the boundary of the problem domain. Fast multipole expansions, local expansions and related translations for the thermal term are derived using complex variables. Several numerical examples are presented to show the accuracy and effectiveness of the developed fast multipole BEM in calculating the displacement and stress fields for 2-D elastic bodies under various thermal loads, including thin structure domains that are difficult to mesh using the finite element method (FEM). The BEM results using constant elements are found to be accurate compared with the analytical solutions, and the accuracy of the BEM results is found to be comparable to that of the FEM with linear elements. In addition, the BEM offers the ease of use in generating the mesh for a thin structure domain or a domain with complicated geometry, such as a perforated plate with randomly distributed holes for which the FEM fails to provide an adequate mesh. These results clearly demonstrate the potential of the developed fast multipole BEM for solving 2-D thermoelasticity problems.  相似文献   

20.
This paper presents a three dimensional (3D) hybrid boundary element–finite element (BE–FE) method solution to the electrical impedance tomography (EIT) forward problem. EIT is a method to find the distribution of electrical conductivity within an object through injecting current on surface electrodes placed on the object, and measuring the distribution of potential around the object. Existing 3D models are based on the finite element (FE) method and the boundary element (BE) method. In this paper, a hybrid BE–FE method approach is demonstrated for modeling the forward problem of EIT. Such a hybrid BE–FE technique combines strengths of FE and BE methods by dividing the regions into some homogeneous BE regions and heterogeneous FE regions. To validate numerical results, a homogenous test problem is solved analytically for the electrical potential. A cylindrical model of human thorax is studied. Results obtained for this model from BE, FE, and hybrid BE–FE methods with three different meshes and two different electrode placement strategies are compared.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号