首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The constantly rising demands on finite element simulations yield numerical models with increasing number of degrees‐of‐freedom. Due to nonlinearity, be it in the material model or of geometrical nature, the computational effort increases even further. For these reasons, it is today still not possible to run such complex simulations in real time parallel to, for example, an experiment or an application. Model reduction techniques such as the proper orthogonal decomposition method have been developed to reduce the computational effort while maintaining high accuracy. Nonetheless, this approach shows a limited reduction in computational time for nonlinear problems. Therefore, the aim of this paper is to overcome this limitation by using an additional empirical interpolation. The concept of the so‐called discrete empirical interpolation method is translated to problems of solid mechanics with soft nonlinear elasticity and large deformations. The key point of the presented method is a further reduction of the nonlinear term by an empirical interpolation based on a small number of interpolation indices. The method is implemented into the finite element method in two different ways, and it is extended by using different solution strategies including a numerical as well as a quasi‐Newton tangent. The new method is successfully applied to two numerical examples concerning hyperelastic as well as viscoelastic material behavior. Using the extended discrete empirical interpolation method combined with a quasi‐Newton tangent enables reductions in computational time of factor 10 with respect to the proper orthogonal decomposition method without empirical interpolation. Negligibly, orders of error can be reached. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
In this paper, we develop a novel algorithm for the dimensional reduction of the models of hyperelastic solids undergoing large strains. Unlike standard proper orthogonal decomposition methods, the proposed algorithm minimizes the use of the Newton algorithms in the search of non‐linear equilibrium paths of elastic bodies. The proposed technique is based upon two main ingredients. On one side, the use of classic proper orthogonal decomposition techniques, that extract the most valuable information from pre‐computed, complete models. This information is used to build global shape functions in a Ritz‐like framework. On the other hand, to reduce the use of Newton procedures, an asymptotic expansion is made for some variables of interest. This expansion shows the interesting feature of possessing one unique tangent operator for all the terms of the expansion, thus minimizing the updating of the tangent stiffness matrix of the problem. The paper is completed with some numerical examples in order to show the performance of the technique in the framework of hyperelastic (Kirchhoff–Saint Venant and neo‐Hookean) solids. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
A new approach for the dimensional reduction via projection of nonlinear computational models based on the concept of local reduced‐order bases is presented. It is particularly suited for problems characterized by different physical regimes, parameter variations, or moving features such as discontinuities and fronts. Instead of approximating the solution of interest in a fixed lower‐dimensional subspace of global basis vectors, the proposed model order reduction method approximates this solution in a lower‐dimensional subspace generated by most appropriate local basis vectors. To this effect, the solution space is partitioned into subregions, and a local reduced‐order basis is constructed and assigned to each subregion offline. During the incremental solution online of the reduced problem, a local basis is chosen according to the subregion of the solution space where the current high‐dimensional solution lies. This is achievable in real time because the computational complexity of the selection algorithm scales with the dimension of the lower‐dimensional solution space. Because it is also applicable to the process of hyper reduction, the proposed method for nonlinear model order reduction is computationally efficient. Its potential for achieving large speedups while maintaining good accuracy is demonstrated for two nonlinear computational fluid and fluid‐structure‐electric interaction problems. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
This paper presents a novel class of preconditioners for the iterative solution of the sequence of symmetric positive‐definite linear systems arising from the numerical discretization of transient parabolic and self‐adjoint partial differential equations. The preconditioners are obtained by nesting appropriate projections of reduced‐order models into the classical iteration of the preconditioned conjugate gradient (PCG). The main idea is to employ the reduced‐order solver to project the residual associated with the conjugate gradient iterations onto the space spanned by the reduced bases. This approach is particularly appealing for transient systems where the full‐model solution has to be computed at each time step. In these cases, the natural reduced space is the one generated by full‐model solutions at previous time steps. When increasing the size of the projection space, the proposed methodology highly reduces the system conditioning number and the number of PCG iterations at every time step. The cost of the application of the preconditioner linearly increases with the size of the projection basis, and a trade‐off must be found to effectively reduce the PCG computational cost. The quality and efficiency of the proposed approach is finally tested in the solution of groundwater flow models. © 2016 The Authors. International Journal for Numerical Methods in Engineering Published by John Wiley & Sons Ltd.  相似文献   

5.
A Petrov–Galerkin projection method is proposed for reducing the dimension of a discrete non‐linear static or dynamic computational model in view of enabling its processing in real time. The right reduced‐order basis is chosen to be invariant and is constructed using the Proper Orthogonal Decomposition method. The left reduced‐order basis is selected to minimize the two‐norm of the residual arising at each Newton iteration. Thus, this basis is iteration‐dependent, enables capturing of non‐linearities, and leads to the globally convergent Gauss–Newton method. To avoid the significant computational cost of assembling the reduced‐order operators, the residual and action of the Jacobian on the right reduced‐order basis are each approximated by the product of an invariant, large‐scale matrix, and an iteration‐dependent, smaller one. The invariant matrix is computed using a data compression procedure that meets proposed consistency requirements. The iteration‐dependent matrix is computed to enable the least‐squares reconstruction of some entries of the approximated quantities. The results obtained for the solution of a turbulent flow problem and several non‐linear structural dynamics problems highlight the merit of the proposed consistency requirements. They also demonstrate the potential of this method to significantly reduce the computational cost associated with high‐dimensional non‐linear models while retaining their accuracy. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
In this paper, a non‐intrusive stochastic model reduction scheme is developed for polynomial chaos representation using proper orthogonal decomposition. The main idea is to extract the optimal orthogonal basis via inexpensive calculations on a coarse mesh and then use them for the fine‐scale analysis. To validate the developed reduced‐order model, the method is implemented to: (1) the stochastic steady‐state heat diffusion in a square slab; (2) the incompressible, two‐dimensional laminar boundary‐layer over a flat plate with uncertainties in free‐stream velocity and physical properties; and (3) the highly nonlinear Ackley function with uncertain coefficients. For the heat diffusion problem, the thermal conductivity of the slab is assumed to be a stochastic field with known exponential covariance function and approximated via the Karhunen–Loève expansion. In all three test cases, the input random parameters are assumed to be uniformly distributed, and a polynomial chaos expansion is found using the regression method. The Sobol's quasi‐random sequence is used to generate the sample points. The numerical results of the three test cases show that the non‐intrusive model reduction scheme is able to produce satisfactory results for the statistical quantities of interest. It is found that the developed non‐intrusive model reduction scheme is computationally more efficient than the classical polynomial chaos expansion for uncertainty quantification of stochastic problems. The performance of the developed scheme becomes more apparent for the problems with larger stochastic dimensions and those requiring higher polynomial order for the stochastic discretization. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
This paper presents a comparison between the modal identification method (MIM) and the proper orthogonal decomposition‐Galerkin (POD‐G) method for model reduction. An example of application on a nonlinear diffusive system is used to illustrate the study. The study shows that in both methods, the state formulation of the nonlinear diffusive equation may be similar. However, the ideas behind both methods are completely different. The considered example shows that, for both methods, reducing the order up to 99.5% gives enough accuracy to simulate the dynamic of the original system. It is also seen in this example that the reduced model given through the MIM are slightly faster and more accurate than the ones given through the POD‐G method. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

8.
A novel model reduction technique for static systems is presented. The method is developed using a goal‐oriented framework, and it extends the concept of snapshots for proper orthogonal decomposition (POD) to include (sensitivity) derivatives of the state with respect to system input parameters. The resulting reduced‐order model generates accurate approximations due to its goal‐oriented construction and the explicit ‘training’ of the model for parameter changes. The model is less computationally expensive to construct than typical POD approaches, since efficient multiple right‐hand side solvers can be used to compute the sensitivity derivatives. The effectiveness of the method is demonstrated on a parameterized aerospace structure problem. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
This paper is a continuation of Reference [26] (Cecot, Demkowicz and Rachowicz, Computer Methods in Applied Mechanics and Engineering 2000; 188 : 625–643) and describes an implementation of the infinite element for three‐dimensional, time harmonic Maxwell's equations, proposed in Reference [15] (Demkowicz and Pal, Computer Methods in Applied Mechanics and Engineering 1998; 164 : 77–94). The element is compatible with the hp finite element discretizations for Maxwell's equations in bounded domains reported in References [16–18] (Computer Methods in Applied Mechanics and Engineering 1998; 152 : 103–124, 1999; 169 : 331–344, 2000; 187 : 307–337). Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

10.
This report presents a numerical study of reduced‐order representations for simulating incompressible Navier–Stokes flows over a range of physical parameters. The reduced‐order representations combine ideas of approximation for nonlinear terms, of local bases, and of least‐squares residual minimization. To construct the local bases, temporal snapshots for different physical configurations are collected automatically until an error indicator is reduced below a user‐specified tolerance. An adaptive time‐integration scheme is also employed to accelerate the generation of snapshots as well as the simulations with the reduced‐order representations. The accuracy and efficiency of the different representations is compared with examples with parameter sweeps. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
A rigorous computational framework for the dimensional reduction of discrete, high‐fidelity, nonlinear, finite element structural dynamics models is presented. It is based on the pre‐computation of solution snapshots, their compression into a reduced‐order basis, and the Galerkin projection of the given discrete high‐dimensional model onto this basis. To this effect, this framework distinguishes between vector‐valued displacements and manifold‐valued finite rotations. To minimize computational complexity, it also differentiates between the cases of constant and configuration‐dependent mass matrices. Like most projection‐based nonlinear model reduction methods, however, its computational efficiency hinges not only on the ability of the constructed reduced‐order basis to capture the dominant features of the solution of interest but also on the ability of this framework to compute fast and accurate approximations of the projection onto a subspace of tangent matrices and/or force vectors. The computation of the latter approximations is often referred to in the literature as hyper reduction. Hence, this paper also presents the energy‐conserving sampling and weighting (ECSW) hyper reduction method for discrete (or semi‐discrete), nonlinear, finite element structural dynamics models. Based on mesh sampling and the principle of virtual work, ECSW is natural for finite element computations and preserves an important energetic aspect of the high‐dimensional finite element model to be reduced. Equipped with this hyper reduction procedure, the aforementioned Galerkin projection framework is first demonstrated for several academic but challenging problems. Then, its potential for the effective solution of real problems is highlighted with the realistic simulation of the transient response of a vehicle to an underbody blast event. For this problem, the proposed nonlinear model reduction framework reduces the CPU time required by a typical high‐dimensional model by up to four orders of magnitude while maintaining a good level of accuracy. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
To be feasible for computationally intensive applications such as parametric studies, optimization, and control design, large‐scale finite element analysis requires model order reduction. This is particularly true in nonlinear settings that tend to dramatically increase computational complexity. Although significant progress has been achieved in the development of computational approaches for the reduction of nonlinear computational mechanics models, addressing the issue of contact remains a major hurdle. To this effect, this paper introduces a projection‐based model reduction approach for both static and dynamic contact problems. It features the application of a non‐negative matrix factorization scheme to the construction of a positive reduced‐order basis for the contact forces, and a greedy sampling algorithm coupled with an error indicator for achieving robustness with respect to model parameter variations. The proposed approach is successfully demonstrated for the reduction of several two‐dimensional, simple, but representative contact and self contact computational models. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
Reduced order models are useful for accelerating simulations in many‐query contexts, such as optimization, uncertainty quantification, and sensitivity analysis. However, offline training of reduced order models (ROMs) can have prohibitively expensive memory and floating‐point operation costs in high‐performance computing applications, where memory per core is limited. To overcome this limitation for proper orthogonal decomposition, we propose a novel adaptive selection method for snapshots in time that limits offline training costs by selecting snapshots according an error control mechanism similar to that found in adaptive time‐stepping ordinary differential equation solvers. The error estimator used in this work is related to theory bounding the approximation error in time of proper orthogonal decomposition‐based ROMs, and memory usage is minimized by computing the singular value decomposition using a single‐pass incremental algorithm. Results for a viscous Burgers' test problem demonstrate convergence in the limit as the algorithm error tolerances go to zero; in this limit, the full‐order model is recovered to within discretization error. A parallel version of the resulting method can be used on supercomputers to generate proper orthogonal decomposition‐based ROMs, or as a subroutine within hyperreduction algorithms that require taking snapshots in time, or within greedy algorithms for sampling parameter space. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
A high‐order discontinuous Galerkin time‐domain (DGTD) method for Maxwell's equations for dispersive media of Drude type is derived and then used to study the coupling of 2D silver nanowires, which have potential applications in optical circuits without the restriction of diffraction limits of traditional dielectric waveguides. We have demonstrated the high accuracy of the DGTD for the electromagnetic wave scattering in dispersive media and its flexibility in modelling the plasmon resonant phenomena of coupled silver nanowires. Specifically, we study the cross sections of coupled nanowires, the dependence of the resonance on the number of nanowires with more resolved resonance information than the traditional FDTD Yee scheme, time‐domain behaviour of waves impinging on coupled silver nanowires of a funnel configuration, and the energy loss of resonant modes in a linear chain of circular and ellipse nanowires. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

15.
Model order reduction for molecular dynamics (MD) systems exhibits intrinsic complexities because of the highly nonlinear and nonlocal multi‐atomic interactions in high dimensions. In the present work, we introduce a proper orthogonal decomposition‐based method in conjunction with the radial basis function (RBF) approximation of the nonlinear and nonlocal potential energies and inter‐atomic forces for MD systems. This approach avoids coordinate transformation between the physical and reduced‐order coordinates, and allows the potentials and inter‐atomic forces to be calculated directly in the reduced‐order space. The RBF‐approximated potential energies and inter‐atomic forces in the reduced‐order space are discretized on the basis of the Smolyak sparse grid algorithm to further enhance the effectiveness of the proposed method. The good approximation properties of RBFs in interpolating scattered data make them ideal candidates for the reduced‐order approximation of MD inter‐atomic force calculations. The proposed approach is validated by performing the reduced‐order simulations of DNA molecules under various external loadings. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
This paper proposes an approach for hyperreduction of nonlinear structural mechanics equations. For hyperreduction, the nonlinear term is approximated by the third-degree multivariate polynomials represented in terms of a monomial basis. The chosen basis leads to an ill-conditioned minimization problem with the multivariate Vandermonde matrix. The condition number of the resulting problem is significantly improved by choosing an appropriate sparse subset of the initial basis. As a byproduct of the sparse basis, the evaluation time for the hyperreduced model is reduced drastically. The performance of the new approach is demonstrated for two typical applications.  相似文献   

17.
The objective of this paper is to present a model updating strategy of non‐linear vibrating structures. Because modal analysis is no longer helpful in non‐linear structural dynamics, a special attention is devoted to the features extracted from the proper orthogonal decomposition and one of its non‐linear generalizations based on auto‐associative neural networks. The efficiency of the proposed procedure is illustrated using simulated data from a three‐dimensional portal frame. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

18.
This paper introduces multivariate input‐output models to predict the errors and bases dimensions of local parametric Proper Orthogonal Decomposition reduced‐order models. We refer to these mappings as the multivariate predictions of local reduced‐order model characteristics (MP‐LROM) models. We use Gaussian processes and artificial neural networks to construct approximations of these multivariate mappings. Numerical results with a viscous Burgers model illustrate the performance and potential of the machine learning‐based regression MP‐LROM models to approximate the characteristics of parametric local reduced‐order models. The predicted reduced‐order models errors are compared against the multifidelity correction and reduced‐order model error surrogates methods predictions, whereas the predicted reduced‐order dimensions are tested against the standard method based on the spectrum of snapshots matrix. Since the MP‐LROM models incorporate more features and elements to construct the probabilistic mappings, they achieve more accurate results. However, for high‐dimensional parametric spaces, the MP‐LROM models might suffer from the curse of dimensionality. Scalability challenges of MP‐LROM models and the feasible ways of addressing them are also discussed in this study.  相似文献   

19.
A multiscale strategy using model reduction for frictional contact computation is presented. This new approach aims to improve computation time of finite element simulations involving frictional contact between linear and elastic bodies. This strategy is based on a combination between the LATIN (LArge Time INcrement) method and the FAS multigrid solver. The LATIN method is an iterative solver operating on the whole time‐space domain. Applying an a posteriori analysis on solutions of different frictional contact problems shows a great potential as far as reducibility for frictional contact problems is concerned. Time‐space vectors forming the so‐called reduced basis depict particular scales of the problem. It becomes easy to make analogies with multigrid method to take full advantage of multiscale information. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号