首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 166 毫秒
1.
以自制TiO2成型载体采用浸溃法制备了0.5%Pd/TiO2催化剂,考察了催化剂前驱体的焙烧温度对粗对苯二甲酸(CTA)中的主要杂质对羧基苯甲醛(4-CBA)的加氢性能的影响,并用XRD、BET、XPS等手段对催化剂进行了表征。结果表明,Pd在催化剂中呈均匀分散状态,随着焙烧温度的增加,催化剂的BET比表面积无明显变化,但催化剂表面的Pd/O原子比和Pd的比表面积先增大而后降低。焙烧温度400℃时,催化剂表面Pd的比表面积最大,4-CBA的转化率最高。在反应温度280℃~290℃,H,分压0.6~1.5MPa,反应时间0.5~2.0h的条件下,0.5%Pd/TiO2催化剂上4-CBA转化率可在99.2%以上。研究结果可为粗对苯二甲酸加氢精制催化剂的研究提供一个新的方向。  相似文献   

2.
采用浸渍法以TiO2成型载体制备了Pd/TiO2催化剂.采用BET、XRD、XPS、H2-TPR等手段对所制备的催化剂进行了表征.将不同温度下焙烧的TiO2为载体制备的Pd/TiO2催化剂用于粗对苯二甲酸(CTA)中的主要杂质对羧基苯甲醛(4-CBA)的催化加氖反应,考察了载体焙烧温度对其所制备的催化剂活性的影响.结果表明,随着TiO2成型载体焙烧温度的升高,Pd/TiO2催化剂的比表面积和孔容降低,平均孔径增大.Pd/TiO2催化剂样品XRD谱中未检测到金属Pd的特征衍射峰,同时催化剂中TiO2的晶相始终保持锐钛型结构.Pd/TiO2催化剂表面Pd的比表面积随着载体焙烧温度的升高而降低.载体焙烧温度的高低可改变PdHx物种在其所制备的催化剂表面的数量及其结合状态.当TiO2载体焙烧温度为500℃时,所制备的Pd/TiO2催化剂表面Pd的比表面积最大,催化剂的加氢活性最高,在反应温度280℃、H2分压0.6 MPa、反应时间0.3 h的条件下,4-CBA转化率可达到99.5%以上.  相似文献   

3.
焦化汽柴油混合加氢精制组合催化剂的研究   总被引:1,自引:1,他引:0  
采用成型载体浸渍法制备出了NiMoW/Al2O3-TiO2焦化汽柴油混合加氢精制催化剂和NiMo/Al2O3脱硅报护剂,并对组合催化剂进行了焦化汽柴油加氢精制工艺条件试验。结果表明,在活性组分相同的情况下,随着载体中TiO2含量的增加,催化剂的堆积密度增大,侧压强度略有降低,孔容和比表面积减少,总酸量降低。当TiO2质量分数大于5%时,出现TiO2的锐钛矿晶相峰。TiO2改性载体制备的催化剂,具有更好的加氢脱硫、加氢脱氮和加氢活性。制备的焦化汽柴油加氢脱硅保护剂具有较大的孔容和比表面积,而且孔半径较集中分布在﹥5.0nm的区域内,具有较好的容硅能力。焦化汽柴油混合加氢精制组合催化剂适宜的加氢工艺条件为:温度340℃,体积空速2.0h-1,氢油体积比500:1,压力6.7MPa。  相似文献   

4.
液化石油气中C4馏分选择加氢催化剂Pd/ZnO的研制   总被引:2,自引:0,他引:2  
采用新型载体ZnO制备出用于液化石油气中C4馏分选择加氢除丁二烯的催化剂Pd/ZnO。XRD表明该催化剂载体主要物相为ZnO,其晶型为六方晶系,同时XRD显示催化剂经高温焙烧后,一部分ZnO和PdO发生作用,还原时形成Pd-Zn合金态;SEM和汞孔度分析显示催化剂中孔居多,孔径分布合理。研究了焙烧温度、比表面积和Pd含量对催化剂加氢性能的影响,结果表明,合适的焙烧温度为500℃左右,比表面积为35 m2/g左右,Pd质量分数为0.08%左右。研制的催化剂具有良好的加氢活性和选择性,对丁二烯的加氢转化率大于95%,选择性大于90%。  相似文献   

5.
焙烧温度对Al2O3载体及Pd/Al2O3催化剂性能的影响   总被引:3,自引:0,他引:3  
采用CO2气体成胶制备了Al2O3载体,考察了载体焙烧温度对载体和相应Pd/Al2O3催化剂物理化学性质及催化性能的影响,并采用X射线衍射、BET等技术对载体及催化剂性能进行了表征。结果表明,随焙烧温度的升高,载体的比表面积、孔容减小,平均孔径逐渐增大,孔分布较集中。所制得的拟薄水铝石较纯净。400—800℃焙烧时,Al2O3载体只有γ—Al2O3晶型;1050℃时,主要以θ-Al2O3为主;到1250℃已完全转变为α—Al2O3。Pd/Al2O3催化剂均具有较高的双烯加氢活性和选择性,其中以970℃和1050℃焙烧载体制备的催化剂为最优。  相似文献   

6.
选取TiO2为载体,采用沉淀一浸渍法制备了负载型SO4^2-/TiO2固体超强酸催化剂。并运用IR、XRD、比表面积、全硫测定、酸性测定等表征了催化剂。测试结果表明,所制备的催化剂具有固体酸的特征,酸性与焙烧温度有关,适当提高焙烧温度有利于样品酸强度的提高,但焙烧温度过高会导致脱硫;浸渍液H2SO4浓度高有利于提高催化剂的硫含量,但是浓度过高,会在催化剂表面形成硫酸盐.从而降低催化剂的比表面积,酸性降低。气相催化乙醇与叔丁醇制备ETBE的催化活性表明,ETBE的选择性为43.60%。  相似文献   

7.
 采用浸渍法以TiO2成型载体制备了Pd/TiO2催化剂。采用BET、XRD、XPS、H2-TPR等手段对所制备的催化剂进行了表征。将不同温度下焙烧的TiO2为载体制备的Pd/TiO2催化剂用于粗对苯二甲酸(CTA)中的主要杂质对羧基苯甲醛(4-CBA)的催化加氢反应,考察了载体焙烧温度对其所制备的催化剂活性的影响。结果表明,随着TiO2成型载体焙烧温度的升高, Pd/TiO2催化剂的比表面积和孔容降低,平均孔径增大。Pd/TiO2催化剂样品XRD谱中未检测到金属Pd的特征衍射峰,同时催化剂中TiO2的晶相始终保持锐钛型结构。Pd/TiO2催化剂表面Pd的比表面积随着载体焙烧温度的升高而降低。载体焙烧温度的高低可改变PdHx物种在其所制备的催化剂表面的数量及其结合状态。当TiO2载体焙烧温度为500℃时,所制备的Pd/TiO2催化剂表面Pd的比表面积最大,催化剂的加氢活性最高,在反应温度280℃、H2分压0.6 MPa、反应时间0.3 h的条件下,4-CBA转化率可达到99.5%以上。  相似文献   

8.
采用分步共浸渍法制备Co-Mo-Ni-W/γ-Al2O3柴油加氢精制催化剂,利用BET、XRD、TEM等手段对所制备的半成品和成品催化剂进行分析表征,考察了焙烧温度对催化剂微晶结构和物理性质的影响。以直馏柴油作为原料,对不同焙烧温度下制备的催化剂进行加氢精制活性评价。结果表明,随着一次焙烧温度的升高,半成品催化剂的侧压强度、孔容、比表面积、平均孔径略有增加;硫化态半成品催化剂中的MoS2(WS2)微晶平均堆垛层数先增加后减少,晶粒平均长度先减小后增加,400℃焙烧的样品中3~5层微晶结构数量达到最大值,占72.5%,晶粒平均长度达到最低值,1.7nm。随着二次焙烧温度的升高,成品催化剂的侧压强度、比表面积、平均孔径略有增加,孔容基本不变;二次焙烧温度为480℃硫化态成品催化剂中3~5层MoS2(WS2)微晶数量最多。经400℃一次焙烧和480℃二次焙烧制备的Co-Mo-Ni-W/γ-Al2O3催化剂的孔径分布最为集中,其孔径在2.5~8nm范围内的孔体积占了总孔体积的78.2%,其HDS和HDN活性最高。  相似文献   

9.
 以原位生长法制备了TiO2-SiO2与HY分子筛构成的重馏分油加氢精制催化剂复合载体Y/CTS,考察了HY分子筛的复合比例以及HY分子筛的柠檬酸预处理对复合载体理化性质的影响;以胜利焦化蜡油为原料,评价了NiW/Y/CTS催化剂的加氢精制性能。实验结果表明,Y/CTS复合载体具备较大的比表面积、孔容和孔径,以及一定的酸性分布。对HY分子筛进行酸预处理后,HY分子筛的酸量下降,但Y/CTS复合载体的酸性提高,表现为催化剂的加氢脱氮性能显著提高。  相似文献   

10.
采用溶胶-胶法制备了ZrO2载体,应用静态空气、流动空气、流动氮气、流动空气-态空气焙烧方法处理载体粒子,采用浸渍法制备了上述载体的负载型Ni/ZrO2催化剂,考察了焙烧方法、焙烧温度对Ni/ZrO2催化剂性能的影响。结果表明,采用流动氮气500℃焙烧载体,制得的Ni/ZrO2催化剂孔径小,比表面积较大;采用流动氮气800℃焙烧载体,制得的Ni/ZrO2催化剂在联合重整甲烷反应中甲烷转化率高于90%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号