首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tellurite glasses with the composition of xTm_2O_3-(6-x)Y_2O_3-3Na_2O-25ZnO-66TeO_2(where 0≤x≤6)were obtained by the melt-quenching technique.Absorption(300 K),excitation(300 K) and fluorescence spectra(300 K) as well as fluorescence decay curves of Tm~(3+)-doped title glasses are presented and discussed in details.The Judd-Ofelt analysis based on the room temperature absorption spectrum was applied for determination of fundamental fluorescence properties such as radiative transition probabilities(A_T),branching ratios(β_R),radiative lifetimes(τ_R) of the emitting levels of the Tm~(3+) ion and stimulated emission cross-sections(σ_(em)).Fluorescence spectra were recorded and analysed in the visible and near-infrared spectral range.The emission and effective cross-section were calculated for the ~3F_4→~3H_6 transition,showing that the investigated glasses are promising laser host materials,operating at 1.8 μm.The observed concentration quenching and non-exponential decay curves from the ~1 G_4 and ~3H_4 states indicate nonradiative energy transfer between Tm~(3+) ions.The analysis of non-exponential fluorescence decay curves from the ~1 G_4 and ~3H_4 levels was carried out in framework of the InokutiHirayama and Yokota-Tanimoto models and energy transfer microparameters were determined.The self-quenching model was proposed for describing relaxation of the first excited state of the Tm~(3+) ion.  相似文献   

2.
Eu3+ doped strontium-aluminium-bismuth-borate glasses with the chemical composition(50–x)B2O3+20Bi2O3+7Al F3+ 8Sr O+15Sr F2+x Eu2O3(where x=0.1 mol.%, 0.5 mol.%, 1.0 mol.% and 1.5 mol.%) were prepared by the conventional melt quenching technique.Structural properties of the prepared glasses were analysed through X-ray diffraction(XRD), scanning electron microscopy(SEM), energy dispersive spectroscopy(EDS) and Raman spectral techniques.Thermal stability of glass was analysed by differential thermal analysis(DTA) curve.Photoluminescence characteristics were studied using excitation, emission spectra and decay curves of Eu3+ doped strontium-aluminium-bismuth-borate glasses.The Judd-Ofelt(J-O) intensity parameters, Ωλ(λ=2, 4 and 6) were obtained using emission spectra and was used to identify the nature of Eu3+ ions with their surrounding ligands.Using J-O parameters the transition probabilities(A), stimulated emission cross-sections σE p, branching ratios(βR) and radiative lifetimes(τmeas and τcal) were evaluated for the 5D0→7F J(J=0, 1, 2, 3 and 4) transition of Eu3+ ions in the present glasses.The decay profiles were found to be non exponential for all the concentrations and the measured lifetimes(τmeas) were obtained from the decay profiles.The higher values of A, σE p, βR and quantum efficiency(η) for 5D0→7F2 emission transition at 617 nm confirmed the present glass was as active medium for red laser emission applications.  相似文献   

3.
A novel orange-red emitting Ba3Y4O9:Sm3+ phosphors were prepared by a high temperature solid-state reaction in air. X-ray diffraction (XRD), photoluminescence spectra, fluorescence decay and temperature-dependent emission spectra were utilized to characterize the structure and luminescence properties. The results show that the excitation spectrum includes a series of linear peaks at 350, 367, 382, 410, 424, 445, 470 and 495 nm, respectively. Under 410 nm excitation, the emission peaks were located at 574 nm (4G5/26H5/2), 608 nm (4G5/26H7/2), 659 nm (4G5/26H9/2) and 722 nm (4G5/26H11/2), respectively. The concentration quenching occurs when x equals 0.08 for Ba3Y4–xO9:xSm3+ phosphor and its mechanism is ascribed to the dipole–dipole interaction. The chromaticity coordinates of Ba3Y3.92O9:0.08Sm3+ phosphor are in the orange-red region. The temperature-dependent study shows that this phosphor has excellent luminescence thermal-stability. And the luminescence intensity of Ba3Y3.92O9:0.08Sm3+ phosphor at 473 K only declines by about 25.75% of its initial intensity. The experimental data indicate that Ba3Y4O9:Sm3+ phosphor may be promising as an orange-red emitting phosphor for white light emitting diodes.  相似文献   

4.
Europium(Eu~(3+)) doped glasses of chemical compositions(55-x)B_2O_3:10 SiO_2:25 Y_2O_3:10CaO:xEu_2O_3,where x denotes mol% and ranges 0≤ x ≤ 2.5, were synthesized by adopting conventional melt quenching technique, Physical properties like density, molar volume, polaron radius, inter-ionic distance and field strength of the glass samples were investigated to assess the impact of Eu_2O_3. Optical and luminescence properties of the glasses were characterized with optical absorption, photoluminescence,X-ray induced emission spectra, temperature dependence emission spectra and decay times. Judd-Ofelt(JO) intensity parameters(Ω_λ) of the glasses were evaluated based on the absorption spectrum of 0.5 mol%. JO parameters, calculated from absorption spectra with thermal corrections on oscillator strength, were used to evaluate radiative properties such as radiative transition probability(A_R),branching ratio(β_R), stimulated cross section emission(σ) and radiative lifetime(τ_R) for ~5D_0→~7 F_J(J = 0,1,2,3 and 4) transitions. The decay rate of ~5D_0 fluorescent level for all the glass samples was single exponential. Lifetimes of the ~5D_0 level were decreased with increasing concentrations of Eu~(3+)ions from 0.05 mol% to 2.5 mol% which might be due to energy transfer through cross-relaxation in the glasses. The chromaticity coordinates(x, y) were similar for all BSYCaEu glasses and were located at the red region of CIE 1931 color chromaticity diagram. Hence, these results confirm that the Eu~(3+) doped BSYCaEu glasses could be useful for visible red lasers and glass scintillation applications.  相似文献   

5.
Sm3+ ions incorporated Sm2Si2O7 crystalline phase formed in the aluminoborosilicate glass matrix synthesized via melting quenching technique followed by heat-treatment process is reported herewith.The preliminary confirmation on the obtained glass ceramics was made through X-ray diffration(XRD) studies.Formation of non-bridging oxygens(NBOs) in the glass network and the modes of vibrations of network units we re analyzed through Fourier transform infra...  相似文献   

6.
BiOCl crystal shows potential as efficient optical host due to its special layered structure. Here,the luminescence properties of the Er~(3+)/Sm~(3+) co-doped BiOCl phosphors as single-phase phosphors were reported. Upon near ultraviolet excitation(NUV, 380 nm corresponding the ~4 I_(15/2)→ ~4 G_(11/2) transition of Er~(3+) ions), the phosphors exhibit the efficient characteristic emissions of Er~(3+) and Sm~(3+) ions simultaneously. The energy transfer(ET) from Er~(3+) to Sm~(3+) ions in the layered crystals has been validated by the variation of emission intensities and decay lifetimes respectively, which is ascribed to be a dipoledipole interaction. By virtue of the ET behavior and increasing Sm~(3+) ion concentration, the enhancing emission intensity of Sm~(3+) and the tunability of emission color from yellowish-green(0.318, 0.420) to white(0.343, 0.347) are realized. The results of our work indicate that the Er~(3+)/Sm~(3+) co-doped BiOCI phosphor has a promising application serving as single component white emitting phosphors for NUV excited WLEDs.  相似文献   

7.
Rare earth Er3+ doped (Sm1–xErx)2Zr2O7 (x = 0.1, 0.2, and 0.3) ceramic samples were synthesized using a solid state reaction method. The microstructure and thermal properties of these ceramics were investigated to evaluate their potential as thermal barrier coating materials. The results show that ceramics are compact with regular-shaped grains of 1–5 μm size. (Sm1–xErx)2Zr2O7 has a pyrochlore structure mainly determined by ionic radius ratio, but the ordering degree decreases with increase of the Er2O3 content. There is no phase transformation from 1000 to 1200 °C, and the (Sm1–xErx)2Zr2O7 ceramics exhibit excellent phase stability during thermal treatment at 1200 °C for 100 h and 1400 °C for 50 h. The thermal conductivities of dense (Sm1–xErx)2Zr2O7 ceramics range from 1.52 to 1.59 W/(m·K), which is lower than that of Sm2Zr2O7, and decrease as the Er2O3 content increases. Besides, the thermal expansion coefficient of (Sm1–xErx)2Zr2O7 is higher than that of Sm2Zr2O7.  相似文献   

8.
A deep red-emitting SrB4O7:Sm2+ phosphor for light conversion agent was synthesized by the conventional solid-state reaction. X-ray powder diffraction (XRD) analysis confirmed the phase formation of SrB4O 7:Sm2+ materials. Results of luminescence properties showed that the phosphor could be efficiently excited by the UV-vis light region from 250-500 nm, and it exhibited deep red (685 nm) emission corresponding to 5D0 → 7F0 transition of Sm 2+ . The critical quenching concentration of Sm 2+ in SrB4O7 :Sm 2+ phosphor was about 0.05, and the corresponding concentration quenching mechanism was verified to be the dipole-dipole interaction according to the Dexter’s theory. The decay times had few alterations with different concentrations in SrB4O7:xSm 2+ phosphor.  相似文献   

9.
In order to effectively improve the afterglow properties of CaAl_2 O_4:Eu~(2+),Nd~(3+) phosphors,a series of Ca_(0.982-x)Al_2 O_4:0.012 Eu~(2+),0.006 Nd~(3+),xGd~(3+)(x=0,0.012,0.024,0.036,0.048,0.060 mol) phosphors were prepared by a high-temperature solid-phase approach.Crystalline composition and microstructure were characterized by XRD,TEM,HRTEM,and XPS,luminescence properties were systematically analyzed by fluorescence spectra,afterglow decay curves and TL glow curve.Results show that all of Ca_(0.982-x)Al_2 O_4:0.012 Eu~(2+),0.006 Nd~(3+),xGd~(3+)phosphors belong to monoclinic CaAl_2 O_4,without other cystalline phase.The blue emission at 442 nm is observed,which is assigned to the 4 f~65 d→4 f~7 transition of Eu~(2+) ions.Doping with appropriate amount of Gd~(3+) ions(x=0.036 mol) significantly improves the afterglow properties of phosphors,but the excessive doping of Gd~(3+) induces the fluorescent quenching.The doping of moderate Gd3+changes the traps states,the trap depth varies from 0.598 to 0.644 eV and the trap concentration is also greatly improved,thus significantly improving afterglow performance.  相似文献   

10.
Rare earths-doped oxyfluoride glasses based on germanium oxide and lead fluoride were prepared from commercial raw materials. The glasses with general composition of 50GeO2-(50-x-y)PbO-yPbF2-xLnF3 (Ln=Pr3+-Yb3+), contained different concentrations of optically active dopants (x=0.2 mol.% and 2 mol.%) and PbF2 (y≤15 mol.%). The differential thermal analysis (DTA) was used to determine both thermal characteristic and thermal stability properties of the glasses in the function of the kind of dopant, its concentration, and a glass composition. Characteristic glass temperatures such as glass transition temperature (Tg), glass crystallization temperature (Tc) and temperature corresponding to the maximum of the crystallization rate (Tpc) were evaluated. On the basis of obtained results, the thermal stabilities of glasses under study were evaluated using various thermal stability criteria (Dietzel factor ?T, Saad-Poulain factors H' and S). It was found that the increase in rare earth fluoride contents influenced thermal characteristics when the characteristic temperatures of the individual glass was shifted towards higher values. The effect of the PbF2 content and the kind of rare earth impurity on the glass stability was observed. Absorption spectra of lanthanide-doped glasses were measured at room temperature and used to determine the phenomenological intensity parameters Ωt and next, to estimate radiative properties of lanthanide ions in this matrix. Radiative transition probabilities of luminescent states of Ln3+, branching ratios and radiative lifetimes were determined. The variation of the Ωt along the lanthanide series was presented and discussed.  相似文献   

11.
The chemical durability of BaO-Al2O3-P2O5(BAP) system glass doped 10% and 15% Sm2O3 was studied by SEM technique. The results indicated that addition of Al3+ and Sm3+ affected the water resistance ability obviously. The higher of Al3+ and Sm3+ content, the more stable of glass structure, so well as the better of water resistance ability of the Sm2O3 doping phosphate glass. Improvement of the polarize ability (Z2/r) of cations would improve acid resistance ability of rare earth phosphate glass, at the same time, overlays on the glass surface were formed by acid corrosion, which slowered the corrosion rate. In alkali medium, the corrosion mechanism was that the metal ions of phosphate long chains were hydrated, which disentangled the P-O-P bond and formed the orthophosphate units dissolved. And increase of Sm3+ ions resulted in decrease of the alkali resistance ability.  相似文献   

12.
Gd~(3+)-,Pr~(3+)-or Sm~(3+)-doped Co-Zn(Co_(0.5)Zn_(0.5)Fe_2 O_4) magnetic ferrites(i.e.,Co_(0.5)Zn_(0.5)Gd_(0.1)Fe_(1.9)O_4,Co_(0.5)Zn_(0.5)Pr_(0.1)Fe_(1.9)O_4 and Co_(0.5)Zn_(0.5)Sm_(0.1)Fe_(1.9)O_4) were prepared using a facile sol-gel approach,and the structure,surface morphology and chemical composition of the products were studied by means of scanning electron microscopy(SEM),energy dispersive X-ray analysis(EDX),X-ray diffraction(XRD),UVvisible diffuse reflectance spectroscopy(DRS),photoluminescence(PL) spectroscopy,Fourier transform infrared spectroscopy(FT-IR) and vibrating sample magnetometer(VSM) spectroscopy.XRD patterns show the Co-Zn product is composed of cubic spinel phases with few impurities or secondary phases,and the average crystallite sizes of the samples are determined to be approximately~51—80,~99—181,~68—103 and~83—133 nm.Also the coercivity and remnant and saturation magnetizations,evaluated by vibrating sample magnetometer(VSM),are found to increase linearly with the incorporation of Gd3+,Pr3+and Sm3+in the product formulation.The CO_(1-x)Zn_xFe_(2-y)R_yO_4 photocatalyst sample is found to display a red shift in its absorption,and exhibits outstanding photocatalytic effects in the degradation of MO under ultraviolet(UV) light.This is attributed to the reduction of the band gap of cobalt-zinc ferrite due to the presence of rare earth ions.Further in vitro evaluations of the cytotoxic effects of the synthesized nanoparticles were performed on a HeLa cell line.  相似文献   

13.
A series of Sr3Bi1-x(PO4)3: xSm3+phosphors were prepared by solid state method at 1250 °C for 4 h. X-ray diffraction (XRD) indi-cated that the sample was of a pure phase of Sr3Bi(PO4)3. The main excitation peaks were located at 343 (6H5/2→4H9/2), 360 (6H5/2→4D3/2), 373 (6H5/2→6P7/2), 400 (6H5/2→4F7/2), 414 (6H5/2→6P5/2) and 467 nm (6H5/2→4I13/2). The main emission were located at 563 (4G5/2→6H5/2), 599 (4G5/2→6H7/2), 646 (4G5/2→6H9/2) and 708 nm (4G5/2→6H11/2). The intensest emission was excited by 400 nm. We studied the effect of differ-ent doping concentrations of Sm3+ activator on the luminescence properties and found that the luminescent intensity first increased with Sm3+ concentration increasing, and then decreased. The luminescent intensity had the best value when x=0.04. The chromaticity coordinates of the sample Sr3Bi0.96(PO4)3:0.04Sm3+ were (x=0.57, y=0.36), and the lifetime was 2.12 ms.  相似文献   

14.
A series of single-phase and color-tunable phosphors Sr2La3(SiO4)3F:0.15Tb3+,xSm3+(SLSOF:0.15Tb3+,xSm3+) was prepared using solid-state route.The X-ray diffraction(XRD) was used to characterize the phase of the as-prepared samples.The synthesized phosphors have apatite-type structure without other impurities.Sm3+ and Tb3+ ions substitute La3+ into the lattice and form a single...  相似文献   

15.
A series of reddish orange phosphors Ba_3Gd_(1-x)(PO_4)_3:xSm~(3+)(x = 0.02.0.04,...,0.12) were prepared by the high-temperature solid-state reaction. X-ray powder diffraction(XRD) and diffuse reflectance and photoluminescence spectra were utilized to characterize the structure and spectral properties of the phosphors. The phosphors have strong absorption in the near-UV region. CIE chromaticity coordinates of the phosphors are located in the reddish orange region since the strongest emission band is around 598 nm and related to the ~4 G_(5/2)→~6 H_(7/2) transition of Sm~(3+). Optimal concentration of Sm~(3+) in the phosphors is about 6.0 at%. The quantum yield of the Ba_3Gd_(0.94)(PO_4)_3:0,06 Sm~(3+) under excitation at 403 nm is about 52.07%. Temperature dependent photoluminescence spectra of the Ba_3Gd_(0.94)(PO_4)_3:0.06 Sm~(3+) were measured and the phosphor exhibits high thermal stability of emission. All the results show that the Ba_3Gd(PO_4)_3:Sm~(3+) phosphor may be a potential red phosphor for near-UV based white LEDs.  相似文献   

16.
The Zn_(1-x)Al_2 O_4:xEu~(2+) phosphor powders were synthesized by the solid-state reaction method.The synthesis temperature for ZnAl_2 O_4 was optimized,whereas the phase structure,TEM images,photoluminescence(PL) properties,the concentration quenching mechanism,the fluorescence decay curves,as well as the CIE chromaticity coordinates of the samples were investigated in details.Under the excitation at 379 nm,the phosphor exhibits an asymmetric broad-band green emission with a peak at 532 nm,which is ascribed to the 5 d-4 f transition of Eu2+.When the doping concentration of Eu2+ ions is 0.01,the luminescence intensity of the sample reaches the maximum value.It is further proved that the exchange interaction results in the concentration quenching of Eu2+ in the Zn_(1-x)Al_2 O_4:xEu~(2+) phosphor powders.The thermal quenching property of ZnAl_2 O_4:Eu~(2+)phosphor was investigated and the quantum efficiency(QE) values of the selected Zn_(0.99)Al_2 O_4:0.01 Eu~(2+) phosphor was measured and determined as 54.85%.The lifetime of the optimized sample Zn_(0.99)Al_2 O_4:0.01 Eu~(2+) is 3.0852 μs and the CIE coordinate of the sample was calculated as(0.3323,0.5538) with high-color-purity green emission.All properties indicate that the green-emitting ZnAl_2 O_4:Eu~(2+) phosphor powder has potential application in white LEDs.  相似文献   

17.
A series of novel Sm3+-doped LiY(MoO4)2 red phosphors under the UV excitation were synthesized by solid state reaction at 800 ℃ for 7 h. The data measured by X-ray diffraction (XRD) indicated that the samples were all pure phases of LiY(MoO4)2. Their excitation spectra had a broad band ranging from 250 to 350 nm and several sharp peaks. The centers of the peaks were located at about 365 nm (6H5/2→4D3/2), 378 nm (6H5/2→rp7/2), 406 nm (6H5/2→4FT/2), 420 nm (6H5/2→6ps/2), 442 nm (6H5/2→4Gg/2), 471 nm (6H5/2→4I13/2) and 482 nm (6H5/2→419/2), respectively. The strongest emission was excited by 406 nm, and the main emissions were located at 568 nm (4G5/2→6Hs/2), 610 nm (4Gs/2→rH7/2), 649 nm (4G5/2→6H9/2) and 710 nm (4Gs/2→6HII/2). Photoluminescence prop- erties were determined for various concentrations of Sm3+-doped LiY(MoO4)2 host, and the luminescence intensity had the best value when x=0.02 in LiYix(MoO4)2:xSm3+.  相似文献   

18.
A density functional theory(DFT) study was employed to investigate the mechanical property,thermal conductivity,Debye temperature,electronic structure and defect chemistry of(Gd1-xSmx)2Zr2O7.All the(Gd1-xSmx)2Zr2O7 compounds exhibit an excellent structural and mechanical stability(Gd0.25Sm0.75)2Zr2O7 has the lowest Young’s modulus of...  相似文献   

19.
The Ba6-3xSm8+2xTi18O54 (x=2/3) microwave dielectric ceramics were prepared by traditional solid sate reaction technique. The ex-periment was based on the Ba6-3xSm8+2xTi18O54 (BST) microwave dielectric ceramics doped with a certain amount of Bi2O3, then the effects of BaxSr1-xTiO3 additives on the structure and microwave dielectric properties of Ba6-3xSm8+2xTi18O54 ceramics were investigated using X-ray diffraction and scanning electron microscopy. In this study, the small amount substitution of Sr for Ba was effective for the microwave dielec-tric properties of BST, especially the τf could be tuned to near zero. The result showed that the BST possessed excellent dielectric properties when the addition of Bi2O3 and BaxSr1-xTiO3 was 1 wt.% respectively: εr=79.6, Q?f=10789 GHz, τf=-1.5 ppm/oC.  相似文献   

20.
This paper presents the structural, optical absorption, photoluminescence (PL) and decay spectral properties of Dy~(3+)ions doped zinc lead alumino borate (ZPAB) glasses to elucidate their possible usage in photonic devices such as w-LEDs and lasers. A broad hump shown by the XRD spectrum recorded for an un-doped ZPAB glass confirms its non-crystalline nature. The Judd-Ofelt (J-O) intensity parameter evaluated from the measured oscillator strengths of the absorption spectral features were used to estimate various radiative parameters and also to understand the nature of bonding between Dy~(3+)ions and oxygen ligands. Under 350 nm excitation, the as-prepared glasses are exhibiting two emission bands~4F_(9/2)→~6H_(15/2)(blue),and~4F_(9/2)→~6H_(13/2)(yellow) at 483 and 575 nm,respectively. From the PL spectra,the Y/B ratio values, CIE chromaticity color coordinates and color correlated temperature (CCT) were evaluated. The experimental lifetimes measured from the decay profiles are decreasing with increase in Dy~(3+)ions concentration in these glasses which may be attributed to the cross-relaxation and nonradiative multiphonon relaxation process. Decay profiles observed for higher concentration were well fitted to Inokuti-Hirayama (I-H) model to understand the energy transfer process and subsequent decrease in experimental lifetimes. The higher values of radiative parameters, emission cross-sections,quantum efficiency, optical gain and gain band width suggest the suitability of 0.5 mol%of Dy~(3+) ions in these ZPAB glasses for the photonic device application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号