首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Pyrochlore oxides of general compositions, A2Zr2O7, where A is a 3+ cation (La to Lu), are promising candidate materials for ap-plications as high temperature thermal barrier coatings because of their high melting points, high thermal expansion coefficients, and low thermal conductivities. In this study, oxides of Sm2Zr2O7, (Sm0.75La0.25)2Zr2O7, (Sm0.5 La0.5)2Zr2O7, (Sm0.25La0.75)2Zr2O7 and La2Zr2O7 were prepared by solid reactions at 1600 ℃ for 10 h using Sm2O3, La2O3 and ZrO2 as the reactants. The phase compositions of these ceramic ma-terials were analyzed by X-ray diffractometer (XRD) and fourier transform infrared spectroscopy (FT-IR) methods, respectively. The micro-structure was observed by scanning electronl microscope (SEM). The thermal conductivities of these ceramic materials were measured using laser-flash method. XRD and FT-IR results showed that pure ceramic materials with pyrochlore structure were prepared successfully. SEM results indicated that microstructures of these ceramic materials were dense and grain boundaries were very clean. The La2O3 doped Sm2Zr2O7 pyrochlores (Sm0.75 La0.25)2Zr2O7 and (Sm0.5 La0.5)2Zr2O7 had lower thermal conductivity than the undoped Sm2Zr2O7. The thermal conductivity of (Sm0.25La0.75)2Zr2O7 was found to be lower than that of La2Zr2O7. The results showed that these ceramic materials had the poten-tial to be used as candidate materials for TBCs.  相似文献   

2.
The precursors organic cerium deposits were obtained by a stripping precipitation method from cerium-loaded P507 organic phase using oxalic acid as a precipitating agent and nano-sized ceria particles were prepared by calcining the precursors at 500 °C. The morpholo-gies, phase structure of the precursors and ceria particles were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), thermogravimetric analysis (TG-DSC) and infrared spectroscopy analysis (FTIR). The results indicated that the concentration of oxalic acid had a little impact on the morphology of the precursors, which was blocky-shape Ce2(C2O4)3·10H2O with a monoclinic lattice structure. With the volume ratio of organic phase and oxalic acid aqueous solution (aqueous phase) varied from 1:3 to 1:6, the morphologies of the precursors Ce2(C2O4)3·10H2O precipitates gradually changed from inhomogeneous blocky-shape to uniform spherical particles. The precursors could be turned to CeO2 crystal particles with a fluorite structure by calcining, and the products ceria particles were similar in the size and morphology to the precursors.  相似文献   

3.
Ceramic LaNiO3 samples were prepared by solid state reaction method at different sintering temperatures. It was found that the resultant was not ABO3 perovskite single phase but dual phase La2NiO4 and NiO, and the percentage of the two phases varied with sintering temperature. Ceramics sintered at 1400 ℃ were well crystallized and the phase ratio of La2NiO4 was the maximum. The surface morphology observed by scanning electron microscopy (SEM) indicated that the grains of the ceramics sintered at 1400 ℃ were uniform and compact, which were in agreement with the properties of high density and low electrical resistivity of the samples. X-ray diffraction (XRD) patterns of ceramics before and after arc erosion indicated their high structural stability, which resulted in the good arc erosion resistance properties for silver-based electrical contact materials. The contact materials prepared with the ceramic sintered at 1400 ℃ exhibited better mass transition and arc erosion resisting properties.  相似文献   

4.
The NO oxidation reaction was studied over MnOx-CeO2 catalysts prepared by co-precipitation, impregnation and mechanical mixing method, respectively. It was found that the co-precipitation was the most active and a 60% NO conversion was achieved at 250 °C. X-ray diffraction (XRD), Brumauer-Emmett (BET), H2-temperature programmed reduction (H2-TPR) and oxygen storage capacity (OSC) techniques were employed to characterize the physical and chemical properties of the catalysts. XRD results showed that amorphous MnOx or Mn-O-Ce solid solution existed in co-precipitation and impregnation prepared sample, while crystalline MnOx was found in mechanical mixing catalyst. A larger surface area was observed on co-precipitation prepared catalyst compared to those prepared by impregnation and mechanical mixing. The strong interaction between MnOx and CeO2 enhanced the reducibility of the oxides and increased the amount of Mn4+ and activated oxygen, which are favorable for NO oxidation to NO2.  相似文献   

5.
A series of CexZr0.50-xAl0.50O1.75(0.05≤x≤0.45) mixed oxides with different Ce/Zr ratio were prepared by co-precipitation method and characterized by means of X-ray diffraction(XRD),Brunauer-Emmet Teller method(BET),temperature-programmed reduction(H2-TPR) and oxygen pulsing technique.The XRD results showed that all samples kept the single CeO2 cubic fluorite structure after calcination at 600 and 1000 oC for 5 h.The results of BET revealed that CexZr0.50-xAl0.50O1.75 with Ce/Zr molar ratio 1/1 exhibited higher specific surface area(212 m2/g) and larger pore volume(0.40 ml/g).For all aged samples,CZA with Ce/Zr molar ratio 3/7 presented the highest specific surface area(104 m2/g) and pore volume(0.34 ml/g).The compounds could still keep prominent structural and textural stability with excellent redox properties even calcined at 1000 oC.  相似文献   

6.
In order to grow high-quality gallium garnet crystals,polycrystalline materials were used as starting materials.YSGG precursor was synthesized by co-precipitation method using aqueous ammonia as a precipitator,and the precursor was then sintered at different temperatures.The results showed that the feasible pH range was 8.3~9.84 in the process of co-precipitation reaction.The YSGG precursor and the powders sintered at different temperatures were characterized by IR,XRD and TEM methods.It was found that the precursor transformed to pure YSGG polycrystalline phase at 800 ℃.YSGG nano-polycrystalline powders sintered at 800~1000 ℃ were well dispersed and the sizes of the YSGG grains were about 40~100 nm.  相似文献   

7.
CeO2-ZrO2 mixed oxide(Ce0.6Zr0.4O2) prepared by microwave-assisted heating co-precipitation was used as a support to prepare a series of CuO/Ce0.6Zr0.4O2 catalysts with various CuO contents(0 wt.%–15 wt.%) via the method of incipient-wetness impregnation.The obtained CuO/Ce0.6Zr0.4O2 samples were characterized by N2 adsorption,XRD,Raman,TEM and H2-TPR technologies,and their catalytic activities for CO oxidation were investigated.The results showed that the activity of CuO/Ce0.6Zr0.4O2 catalyst was strongly influenced by the content of CuO,and the catalyst with 10 wt.% CuO exhibited the best catalytic activity in CO oxidation,which could be attributed to the high dispersion and reducibility of CuO,and high oxygen vacancy concentration in the catalyst.  相似文献   

8.
Itiswellknownthatautomotiveexhaustisoneofthemajorsourcesofairpollution .Oneofthewaytosolvethisproblemsistheuseofthetree waycatalysts(TWCs) ,whichareabletoneutralizeCO ,CHandNOxsimultaneously .ThemosteffectiveTWCsarethesystemsincludingCeO2[1,2 ] sinceithas…  相似文献   

9.
The efficient Eu2+ -doped Ba3 Si6O12N2 green phosphors were prepared by a traditional solid state reaction method under N2 /H2 atmosphere at a temperature up to 1350 oC for 12h. Photoluminescence (PL) properties showed a broad emission band with a peak of 525 nm and the full width of half-emission maximums (FWHM) of 70 nm under 460 nm light irradiation. The X-ray diffraction patterns (XRD) and scanning electron microscope (SEM) images of the synthesized powder demonstrated its pure phase and excellent crystallization. Quenching concentration in this phosphor was found to be 0.3. The mechanisms of concentration quenching and redshift of emission peak with increasing concentration of Eu2+ were studied. The temperature dependence measurement of this green phosphor revealed excellent thermal quenching property compared to silicate green phosphor. It is believed that Ba3 Si6O12N2 :Eu2+ is an excellent green phosphor for UV or blue chip based white LEDs.  相似文献   

10.
A facile co-precipitation route for the synthesis of well-dispersed LaCoO3 nanocrystals was developed. The asprepared products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive X-ray spectrometer (EDX), and laser Raman spectroscopy (LRS). The resuks showed that modulating the growth parameters, such as the addition of surfactants as well as the adding manner of the precipitator had a significant effect on the overall shape and size of the obtained nanocrystals. The nanorods with the diameter of 20 nm and spherical LaCoO3 nanocrystals with the size of about 25 nm could be obtained at a relatively low calcining temperature of 600℃. Furthermore, the Raman properties of LaCoO3 products obtained at different calcining temperatures were investigated.  相似文献   

11.
Gadolinium solubility and precipitate identification in Mg-Gd binary alloy   总被引:1,自引:0,他引:1  
Gadolinium (Gd) solubility in magnesium (Mg) matrix and precipitate composition in Mg-Gd binary alloys were investigated. The alloys containing different Gd contents (10wt.%-35wt.%) were employed to identify Gd solubility after annealing at different temperatures. It was confirmed that the maximum Gd solubility was 22.8wt.% at 550℃ based on the regression analysis method. Mg5+xGd (0相似文献   

12.
The effect of rare earth doping on thermo-physical properties of lanthanum zirconate was investigated. Oxide powders of various compositions La2Zr2O7 were synthesized by coprecipitation-calcination method. High-temperature dilatometer, DSC, and laser thermal diffusivity methods were used to analyze thermal expansion coefficient (TEC), specific heat, and thermal diffusivity. The results showed that CeO2 doped pyrochlores La2(Zr1.8Ce0.2)2O7 and La1.7(DyNd)0.15(Zr0.8Ce0.2)2O7 had higher TEC than La2Zr2O7 and La1.7Dy0.3Zr2O7. La2(Zr1.8Ce0.2)2O7, La1.7Dy0.3Zr2O7, and La1.7(DyNd)0.15(Zr0.8Ce0.2)2O7 had lower thermal conductivity than undoped La2Zr2O7. The Dy2O3, Nd2O3, and CeO2 codoped composition showed the lowest thermal conductivity and the highest TEC. Thermo-physical results also indicated that TEC of rare earth oxide doped La2Zr2O7 ceramic was slightly higher than that of conventional ZrO2-8Wt.% Y2O3 (8YSZ), and its thermal conductivity was lower than that of 8YSZ.  相似文献   

13.
High thermally stable mesoporous alumina doped with lanthanum was synthesized using inorganic nitrates as precursors and employing pluronic P123 (P123, (EO20PO70EO20, EO=ethylene oxide, PO=propylene oxide)) as a structure-directing agent. After calcination at 400 oC, the resultant lanthanum doped alumina exhibited aγ-Al2O3 phase, which was the same as pure alumina. After the thermal treatment up to 1200 oC, La-doped Al2O3 generated only one phase ofθ-Al2O3 rather than two mixed phase ofθ-Al2O3 andα-Al2O3 and the surface area could still maintain 101 m2/g with a keeping pore volume of 0.66 cm3/g. The excellent thermal sta-bility was explained by the titration of strong Lewis acid sites ofγ-Al2O3 with the assistance of highly dispersed lanthanum species covering on alumina. Furthermore, the lanthanum modified mesoporous alumina was preliminarily employed as a stable support for Pd in the catalytic oxidation of C3H8.  相似文献   

14.
Eu3+ doped Gd2WO6 and Gd2(WO4)3 nanophosphors with different concentrations were prepared via a co-precipitation method. The structure and morphology of the nanocrystal samples were characterized by using X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM), respectively. The emission spectra and excitation spectra of samples were measured. J-O parameters and quantum efficiencies of Eu3+ 5D0 energy level were calculated, and the concentration quenching of Eu3+ luminescence in different matrixes were studied. The results indicated that effective Eu3+:5D0-7F2 red luminescence could be achieved while excited by 395 nm near-UV light and 465 nm blue light in Gd2WO6 host, which was similar to the familiar Gd2(WO4)3:Eu. Therefore, the Gd2WO6:Eu red phosphors might have a potential application for white LED.  相似文献   

15.
(Y,Gd)BO3∶ Eu phosphors were prepared by co-precipitation precursors, and luminescent properties were investigated. The precursors were synthesized by introducing hydroxyl ion to mixed solution of rare earth nitrates and boric acid, either through adding ammonia(precursor 1)or through controlled release of hydroxyl ion of urea(precursor 2). The precursors were fired in air at 1000 ℃ for 2 h. Resulted phosphor synthesized with precursor 1 has non-uniformed particle with mean diameter of about 3 μm, while that with precursor 2 exhibits uniformed near spherical-like morphology with mean diameter of about 300 nm. Phosphors with the two methods exhibit same crystal structure as that of commercial one. Emission spectra of the samples indicate that the sample prepared with precursor 2 shows relative higher intensity(exited by 172 nm VUV)than that prepared with the other precursor.  相似文献   

16.
17.
We investigated the thermal stability and spectroscopic properties of the 1.53 μm emission from 4I13/24I15/2 transition of Er3+ ions in Er3+/Yb3+-codoped Ga-Bi-Pb-Ge heavy metal oxide glass for use in broadband fiber amplifiers. It was noted that the addition of GeO2 effectively enhanced the thermal stability of the heavy metal oxide glass studied. The emission peak located at approximately 1530 nm with a full width at half-maximum of approximately 58 nm. The measured lifetime and the calculated emission cross-section of this transition were 3.2 ms and 10.3×10−21 cm2, respectively. As a result, Ga-Bi-Pb-Ge heavy metal oxide glasses were assumed to be potential host material for the 1.53 μm broadband optical fiber amplifiers.  相似文献   

18.
Mg-20Gd( %, mass fraction)samples were prepared using melt-spinning and copper mold casting techniques. Microstructures and properties of the Mg-20Gd were investigated. Results show that the melt-spun ribbon is mainly composed of supersaturated a-Mg solid solution phase and the as-cast ingot mainly contains a-Mg solid solution and MgsGd phase. The differential scanning calorimeter (DSC) curve of the ribbon exhibits a small exothermic peak in the temperature range from 630 to 680 K, which indicates that the ribbon contains a metastable phase (amorphous). Tensile strength at room temperature of the melt-spun ribbon and as-cast specimen are 308 and 254 MPa, respectively. The elongations of the two samples are less than 2 %. The fracture surfaces demonstrate that the fracture mode of the as-cast Mg-20Gd is a typical cleavage fracture and that of the melt-spun sample is a combination of brittle fracture and ductile fracture.  相似文献   

19.
    
A series of fluorotellurite glasses based on(81–x)Te O2-(10+x)KF-9La2O3(TKL), where x=0 mol.%, 5 mol.%, 10 mol.%, 15 mol.%, doped with 2000 ppm Tm2O3, were prepared by the conventional melt quenching method.The influence of KF content on the thermal stability and optical spectroscopic properties of the Tm3+ doped fluorotellurite glasses were investigated by differential scanning calorimetry(DSC), X-ray diffraction(XRD), density measurement, Fourier transform infrared spectroscopy(FTIR), UV-VIS-NIR optical spectroscopy and fluorescence spectroscopy.Judd-Ofelt intensity parameters of Tm3+ in as-prepared glasses were determined and used to calculate the spontaneous emission probabilities and the radiative lifetime for the 4f-4f transitions of the Tm3+ ions.Stimulated emission cross sections in the 1470 nm region(σse) were evaluated by Füchtbauer-Ladenburg formula.The results showed that KF substitution of Te O2 was beneficial to improving the thermal stability, decreasing glass density and reducing the content of OH related groups for the investigated fluorotellurite glasses.The glass with composition of 66 Te O2-25KF-9La2O3(named TKL25) had the longest radiative lifetime of the 3H4(361 μs) and the largest FWHM×σse value(420.07×10–28 cm3), which made it a promising material for S-band fiber amplifiers.  相似文献   

20.
We investigated the thermal stability and spectroscopic properties of the 1.53 μm emission from 4I13/2→4I15/2 transition of Er3+ ions in Er3+/Yb3+-codoped Ga-Bi-Pb-Ge heavy metal oxide glass for use in broadband fiber amplifiers. It was noted that the addition of GeO2 ef-fectively enhanced the thermal stability of the heavy metal oxide glass studied. The emission peak located at approximately 1530 nm with a full width at half-maximum of approximately 58 nm. The measured lifetime and the calculated emission cross-section of this transition were ~3.2 ms and-10.3×10-21 cm2, respectively. As a result, Ga-Bi-Pb-Ge heavy metal oxide glasses were assumed to be potential host material for the 1.53 μm broadband optical fiber amplifiers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号