首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
In this paper, we present an a posteriori error analysis for the finite element approximation of a variational inequality. We derive a posteriori error estimators of residual type, which are shown to provide upper bounds on the discretization error for a class of variational inequalities provided the solutions are sufficiently regular. Furthermore we derive sharp a posteriori error estimators with both lower and upper error bounds for a subclass of the obstacle problem which are frequently met in many physical models. For sufficiently regular solutions, these estimates are shown to be equivalent to the discretization error in an energy type norm. Our numerical tests show that these sharp error estimators are both reliable and efficient in guiding mesh adaptivity for computing the free boundaries.  相似文献   

2.
In this paper, we derive a posteriori error estimates of recovery type, and present the superconvergence analysis for the finite element approximation of distributed convex optimal control problems. We provide a posteriori error estimates of recovery type for both the control and the state approximation, which are generally equivalent. Under some stronger assumptions, they are further shown to be asymptotically exact. Such estimates, which are apparently not available in the literature, can be used to construct adaptive finite element approximation schemes and as a reliability bound for the control problems. Numerical results demonstrating our theoretical results are also presented in this paper.  相似文献   

3.
A posteriori error estimates for two-body contact problems are established. The discretization is based on mortar finite elements with dual Lagrange multipliers. To define locally the error estimator, Arnold–Winther elements for the stress and equilibrated fluxes for the surface traction are used. Using the Lagrange multiplier on the contact zone as Neumann boundary conditions, equilibrated fluxes can be locally computed. In terms of these fluxes, we define on each element a symmetric and globally H(div)-conforming approximation for the stress. Upper and lower bounds for the discretization error in the energy norm are provided. In contrast to many other approaches, the constant in the upper bound is, up to higher order terms, equal to one. Numerical examples illustrate the reliability and efficiency of the estimator. This work was supported in part by the Deutsche Forschungsgemeinschaft, SFB 404, B8.  相似文献   

4.
In this paper we consider (hierarchical, La-grange)reduced basis approximation anda posteriori error estimation for linear functional outputs of affinely parametrized elliptic coercive partial differential equa-tions. The essential ingredients are (primal-dual)Galer-kin projection onto a low-dimensional space associated with a smooth “parametric manifold” - dimension re-duction; efficient and effective greedy sampling meth-ods for identification of optimal and numerically stable approximations - rapid convergence;a posteriori er-ror estimation procedures - rigorous and sharp bounds for the linear-functional outputs of interest; and Offine-Online computational decomposition strategies - min-imummarginal cost for high performance in the real-time/embedded (e.g., parameter-estimation, control)and many-query (e.g., design optimization, multi-model/ scale)contexts. We present illustrative results for heat conduction and convection-diffusion,inviscid flow, and linear elasticity; outputs include transport rates, added mass,and stress intensity factors. This work was supported by DARPA/AFOSR Grants FA9550-05-1-0114 and FA-9550-07-1-0425,the Singapore-MIT Alliance,the Pappalardo MIT Mechanical Engineering Graduate Monograph Fund,and the Progetto Roberto Rocca Politecnico di Milano-MIT.We acknowledge many helpful discussions with Professor Yvon Maday of University Paris6.  相似文献   

5.
This paper develops an a posteriori error estimate of residual type for finite element approximations of the Allen–Cahn equation ut − Δu+ ε−2 f(u)=0. It is shown that the error depends on ε−1 only in some low polynomial order, instead of exponential order. Based on the proposed a posteriori error estimator, we construct an adaptive algorithm for computing the Allen–Cahn equation and its sharp interface limit, the mean curvature flow. Numerical experiments are also presented to show the robustness and effectiveness of the proposed error estimator and the adaptive algorithm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号