首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
掌握高压直流电缆系统的安全裕度是保证电缆线路长期安全运行的前提条件。为获取高压直流电缆系统的最高使用电压,文中测试了电缆绝缘和附件绝缘的电导率,得出了电导率对温度和电场强度的依赖关系,并求出了电导率表达式。以±80 kV高压直流电缆系统为研究对象,提出了电缆系统安全裕度试验方法,采用逐级加压的方式测试了电缆系统在最高运行温度90℃下的击穿电压。根据电缆绝缘和附件绝缘的电导率计算了电缆系统击穿时的电场分布,通过对比电缆系统击穿时的电场强度与长期运行所需承受的电场强度,获得了电缆系统的安全裕度。研究表明,文中提出的试验方法能够获得高压直流电缆系统安全裕度,研究结果可为高压直流电缆工程的安全运行提供理论和试验依据。  相似文献   

2.
为探究高压交联聚乙烯(XLPE)电力电缆在运行一段时期后的绝缘性能变化表征及老化程度判别依据,对新电缆、实际运行年限为2 a、5 a、9 a和12 a的220 k V高压XLPE电缆绝缘的介质损耗因数频谱、氧化诱导期和工频击穿电场强度等进行了研究。对实际不同运行年限的电缆样本进行了轴向切片处理,制取了表面平整、厚度为1 mm的片状试样并进行了测试。试验发现:XLPE的低频介质损耗因数与老化程度存在对应关系,当频率在0.1 Hz以下时,介质损耗角正切值(tanδ)随老化程度而呈现明显线性上升趋势;随着运行年限的增长,XLPE电缆的氧化诱导期(OIT)与羰基指数这2项参数均同时增大;当运行年限达到约5 a和12 a时,XLPE电缆的击穿电场强度明显下降,运行年限为12 a电缆的击穿电场强度比新电缆的降幅可达约13%。对以上参数的测量都可以作为评估运行XLPE电缆老化状态的有效手段,其中测试运行XLPE电缆的绝缘击穿电场强度变化情况可以反映其综合老化程度,是适合于实际工程应用的简单有效方法。  相似文献   

3.
直流耐压试验对交联聚乙烯电缆绝缘的危害性   总被引:11,自引:0,他引:11  
聚合物绝缘介质中存在着大量的电荷陷阱,在直流电场的作用下,电荷的注入或添加剂的电离化,在绝缘中形成了严重的空间电荷效应。通过试样击穿的极性效应、XLPE电缆绝缘中空间电荷分布的测量,阐明空间电荷对电场的畸变,畸变可使绝缘中的最大电场强度达到击穿强度。通过聚乙烯的直流击穿电场强度和预压短路击穿电场强度的比较,说明短路放电也可以引起电缆绝缘的击穿或损伤。  相似文献   

4.
500 kV直流电缆接头设计的核心内容是增强绝缘的材料性能和几何结构.本文计算和仿真了直流电缆接头内电缆主绝缘与增强绝缘双层介质的电场分布特征,分析了直流电缆接头由界面放电引起的击穿故障的发展机理,测试了直流电缆接头中的交联聚乙烯(XLPE)与硅橡胶(SR)介质界面的击穿特性.结果表明:增强绝缘与电缆接头主绝缘的电导率和界面切向电场强度是增强绝缘设计的关键参数;增强绝缘材料的电导率在温度和电场容许范围内应始终小于XLPE;主绝缘与增强绝缘界面的切向电场强度是影响直流电缆接头运行可靠性的关键控制参数,在最不利的条件下其阈值为2.5 kV/mm.研究结果为解决直流电缆接头尤其是增强绝缘的设计问题提供了新方法.  相似文献   

5.
电缆在实际的敷设、接头制作以及运行过程中往往会遭受到难以预料的损伤从而导致其绝缘性能下降,引发击穿,影响电力系统的正常安全运行环境。为了研究导致电缆主绝缘击穿的因素,以一起220 kV故障电缆为例,对其进行解剖分析,发现导致其发生击穿事故的诱因包括接头制作过程中预制件发生位错、主绝缘表面存在刀痕以及主绝缘存在微孔。预制件的位错会导致电缆主绝缘表面电场不均匀,易产生放电现象而引发击穿;通过仿真计算分析了主绝缘在表面存在刀痕以及内部靠近铜芯处存在微孔的情况下的电场分布,发现主绝缘表面刀痕处的电场会急剧增大,容易诱发强烈的局部放电而引起击穿,而铜芯附近的微孔内的局部电场强度会畸变增强,易引发局部放电从而形成放电通道。综上分析,预制件位错、表面划痕及内部微孔等会导致电缆主绝缘电场畸变的因素是导致电缆发生击穿的主要诱因。  相似文献   

6.
为了研究矿用高压屏蔽电缆结构尺寸对电场分布的影响,以6/l0 kV MYJV22矿用XLPE电缆为研究对象,利用ANSYS有限元软件建立了电缆结构模型,分析电缆半导电屏蔽层、绝缘层厚度、线芯半径及电缆长度对电场分布的影响,并通过电缆绝缘击穿强度的分析对研究结论进行了验证。结果表明:电缆中最大电场强度位于导体屏蔽表面处,且半导电屏蔽层结构对改善绝缘径向电场分布有很大的作用;最大电场强度随着绝缘层厚度的增加而减小,而击穿强度变化不大;随着电缆长度的增加,最大电场强度与击穿强度略微下降;随着线芯截面的增大,击穿强度随之下降,但绝缘层承受的最大场强也相应减小。  相似文献   

7.
超高压(EHV)电缆接头内部存在的缺陷将造成电场集中,局部温度升高,达到一定程度即发生闪络或击穿,影响其安全可靠运行。为研究影响电缆接头内部电场和温度场分布的主要因素,利用有限体积法对电缆接头进行了电场-温度场耦合仿真,研究了电缆接头在正常工作状态、绝缘材料存在杂质颗粒、应力锥表面存在毛刺突起、硅橡胶绝缘材料老化等情况下的电场-温度场分布特性。研究结果表明:接头与绝缘界面、导体屏蔽管两端等位置是绝缘的薄弱环节,容易发生沿面闪络或绝缘击穿;接头绝缘中微小的杂质颗粒可能导致局部温度超过绝缘材料的耐受温度,加速绝缘老化;老化到一定程度时,温度和电场强度又将大幅度升高,对接头安全运行造成严重隐患。该研究结果对电缆接头的结构优化设计和绝缘材料的选择具有一定的参考意义。  相似文献   

8.
电缆附件的用量随着我国城市电缆网络的发展得到了越来越广泛的使用,然而电缆附件由于制作工艺或运行环境的影响,故障率仍居高不下.分析了一起由工艺质量引起的电缆终端接头故障,解剖后发现半导电层具有较多的凸起和尖刺,随后通过有限元仿真软件建立电缆终端模型,仿真分析了半导电层无凸起、存在凸起及存在凸起且伴随气隙时的最大电场强度,得出在半导电层制作工艺不良产生凸起的情况下会引发局部放电,最终导致终端击穿故障.  相似文献   

9.
为解决电缆终端内绝缘带溶胀导致的渗漏油问题,以退运充油终端内以及未使用的同型号绝缘带、绝缘油为研究对象,基于运行要求设计了相容性试验,并进行了红外光谱、失重率、击穿电压等对比测试,分析了溶胀发生的原因以及防治措施。测试结果表明硫化不充分会导致橡胶材料更容易与聚异丁烯绝缘油反应,绝缘带与绝缘油加速热老化后绝缘带质量、绝缘油击穿性能均有明显降低。使用该批次橡胶绝缘带的电缆终端投运后,浸泡在绝缘油中的绝缘带溶胀甚至软化开裂,会导致密封失效发生渗漏油,同时绝缘油击穿性能下降,需尽快更换相应电缆终端。目前并无适用的电缆附件内材料相容性试验和高黏度绝缘油击穿电压测试方法标准,基于已开展的多组对比试验结果,明确了电缆终端内绝缘带与绝缘油相容性试验的关键参数和评价指标,提出适用于高黏度绝缘油的击穿电压测试方法,为同型号充油终端的检查和更换措施提供技术支持,避免了批次性故障的发生。  相似文献   

10.
高压电缆作为输送电能的优选设备而被广泛应用,但其长期处于高压环境下,将会导致故障的发生。电缆接头是电缆中最为薄弱的环节,由于其制造过程的不严谨和长期运行与高压环境,将会产生诸多绝缘缺陷,导致局部放电。缺陷会导致内部场强的增加和温度的升高,将严重影响电缆的正常工作,甚至导致绝缘击穿引发巨大故障。为预防绝缘缺陷引起的故障,对电缆进行气隙,杂质和受潮3种典型的绝缘缺陷进行仿真分析,通过对比来得出不同缺陷对电场强度和电压的影响,接着对中间接头的典型绝缘缺陷进行了局部放电检测,结果显示即使微小的缺陷也会引起场强和电压的突变,从而导致绝缘劣化。  相似文献   

11.
This paper discusses the results of a basic study for the development of 500 kV XLPE power cables. The authors have established that the factors that decide the performance of today's XLPE cables are impurities in the insulator and protrusions on the semiconductive layer, and that the insulation performance of XLPE power cables is determined by the size of these defects. In model tests of XLPE power cables, the minimum insulation breakdown stress of cables was determined, to set the design values for 500 kV XLPE cable. As a result, it was found that it is possible to design cables having an insulation thickness of 25 mm  相似文献   

12.
The DC characteristics of XLPE (crosslinked polyethylene) power cables were investigated. Cables with an insulation thickness of 2.5 mm, 9 mm, and 13 mm using either XLPE or conductive-inorganic-filled XLPE (XL-A) were manufactured, and four kinds of breakdown tests (DC, polarity reversal, impulse, and superposing opposite polarity impulse on DC prestress) were performed. A 250 kV, XL-A cable (20 mm thickness) was designed and manufactured using the results. The test results show that the XL-A cable possesses much better DC breakdown characteristics than the XLPE cable and is adequate for use in DC cables  相似文献   

13.
This paper provides data on four commercial tree retardant crosslinked polyethylene (TR-XLPE) and one cross-linked polyethylene (XLPE) insulated 15 kV cables supplied by three manufacturers. The cables have "super-smooth" conductor shields and "extra-clean" insulation and insulation shields. AC and impulse voltage breakdown and selected other characterization data are presented for cables that were aged immersed in room temperature water (15-30/spl deg/C) up to 24 months of a planned 48 months aging program. The five cables have high ac voltage breakdown strength, three of the TR-XLPE cables, actually increased in breakdown strength during aging. The one TR-XLPE cable that had the lowest ac voltage breakdown had vented trees at the insulation shield and high dissipation factor, which the other cables did not have. The impulse voltage breakdown strength of all cables decreased during aging; the cable with the lowest ac voltage breakdown also has the lowest impulse voltage breakdown. The dissimilar performance of the TR-XLPE cables and the excellent performance of the XLPE cable indicates evaluations at longer times are required to differentiate between modern TR-XLPE and XLPE insulated cables.  相似文献   

14.
高压XLPE电缆绝缘V t特性研究综述   总被引:2,自引:0,他引:2  
交联聚乙烯(cross linked polyethylene,XLPE)绝缘电力电缆是输电线路的重要电 力设备。针对高压交流和直流电缆系统的运行现状,介绍了运用V t特性(击穿电压与击穿时间的关系)曲线描述XLPE电缆绝缘的电老化寿命模型,分析了国内外高压交、直流XLPE电缆绝缘V t特性的研究方法及相关结果。已有的研究结果表明,交流XLPE电缆绝缘的电老化寿命指数n值在9~25之间,直流XLPE电缆绝缘的电老化寿命指数n值在13~20之间。国内目前尚未见有关直流电缆绝缘V t特性研究的文献报道。  相似文献   

15.
Present industry specifications allow thermoset insulated polymeric cables to be subjected to emergency conductor temperatures of up to 130°C. The effect of the high temperatures on cable integrity has been questioned. This study shows that cyclic, long-term or fast-rise application of 130°C to service-aged, water treed underground residential distribution (URD), crosslinked polyethylene (XLPE) insulated cables, result in an increase in dielectric strength. Contrary to what happens in new cables, an increase in temperature from ambient to 130°C also results in an increase in voltage breakdown strength. It appears that at high temperature, moisture and some remnant by-products of the crosslinking reaction such as volatiles, diffuse from the insulation, contributing to the higher levels of dielectric strength. It is shown that thermoplastic insulation shields on XLPE service-aged cables are adversely affected by emergency temperatures.  相似文献   

16.
Cables as elements of power distribution system have great influence on its reliable service and overall planning requirements. During last years, crosslinked polyethylene (XLPE) cables have been more and more used in power systems. This paper presents the results of an investigation of changing of (XLPE) cables insulation breakdown stress (AC BDS) due to water absorption. The paper deals with AC BDS of the following kinds of XLPE cable insulations: steam and dry cured with water tree retardant crosslinked polyethylene (TR-XLPE) and non-tree retardant crosslinked polyethylene (XLPE). During tests, the tap water was injected into, (1) conductor with cable ends closed; (2) into cable conductor with ends opened; and (3) into metallic screen with cable ends opened. The presence of water in XLPE cables was subjected to electrical stress and heating. AC BDS tests were performed as a function of aging time and water content in the cable insulation at different aging temperatures. Also, in this investigation, tests with the changing of AC BDS in the radial direction of unaged and aged XLPE cable insulations were carried out.  相似文献   

17.
交联聚乙烯电力电缆的介电损耗机理(英文)   总被引:1,自引:0,他引:1  
基于电介质物理学经典理论及其在聚合物绝缘材料上的最新发展,阐述绝缘材料的介质损耗机理以及交联聚乙烯电力电缆介电损耗的最新研究进展。通过大量的试验研究,结合等效电路法和微观理论分析,发现了交联聚乙烯电力电缆绝缘系统中在不同频率时起主要作用的3种不同类型的介电损耗,且这些介电损耗共同造成了50 Hz频率电力电缆系统的介电损耗。这一新发现可以帮助电缆制造商提高生产技术,有助于电气工程师更好地了解电力电缆绝缘系统,从而可能减少电力电缆的介电损耗和增加其寿命。  相似文献   

18.
This review summarizes research on treeing phenomena, i.e. the formation of electrical trees and water trees, that has been undertaken in Japan for the development of 500 kV XLPE cable. Section 1 presents the results of factors affecting XLPE cable insulation breakdown under commercial ac and lightning impulse voltages. Section 2 verifies the phenomena of electrical tree formation in XLPE cable insulation using block samples and model cables, and gives the results of studies to determine the level electrical field stress initiation for such trees. Section 3 summarizes the results of studies on long-term aging characteristics, which is a particular problem under commercial ac voltages, while Section 4 explains how this research influenced the design of 500 kV XLPE cable insulation. All authors were members of `The investigation committee of fundamental process of treeing degradation' under IEEJ  相似文献   

19.
交联聚乙烯(XLPE)因其优异的介电、理化性能而被广泛应用于电缆绝缘领域。在电缆的服役过程中,电缆绝缘内部会积聚空间电荷,严重时可引发电场畸变,导致电缆击穿事故发生。对于直流XLPE电缆,空间电荷的积聚及影响更加不容忽视。针对直流XLPE电缆绝缘中产生的空间电荷积聚效应,目前学界主要采用共混改性、聚合物链段接枝极性基团、纳米掺杂改性及制备高纯净绝缘料等方法来进行控制,改性后的直流XLPE电缆绝缘对空间电荷产生的抑制效果均有所提升。文中首先对上述直流XLPE电缆绝缘中空间电荷的抑制方法进行综述,介绍其抑制原理以及相应的抑制效果,然后对比总结不同抑制空间电荷方法的优缺点,最后对未来直流XLPE电缆绝缘中空间电荷抑制方法的研究发展作出展望。  相似文献   

20.
An interfacial diffusion method was devised to reduce insulation thickness by improving the interfacial properties of XLPE cable insulation. This method is based on a proposed concept of the facilitation of oriented lamellar growth at the interface by addition of special ingredients to the semiconducting layer, which would diffuse into polyethylene in the three layer simultaneous extrusion process for cable manufacture. Diffusion of the ingredients would facilitate lamellae to grow perpendicularly to the semiconducting layers, as predicted theoretically from a free energy model. It was clarified experimentally that oriented lamellar growth would increase the breakdown strength of XLPE insulation. It is suggested the XLPE cables manufactured by this method could be reduced in thickness especially for extra-high voltage, or the cable could be upgraded from 65 to 154 kV as the insulation thickness remains 9 mm  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号