首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Metal-insulator-metal (MIM) capacitors with (HfO/sub 2/)/sub 1-x/(Al/sub 2/O/sub 3/)/sub x/ high-/spl kappa/ dielectric films were investigated for the first time. The results show that both the capacitance density and voltage/temperature coefficients of capacitance (VCC/TCC) values decrease with increasing Al/sub 2/O/sub 3/ mole fraction. It was demonstrated that the (HfO/sub 2/)/sub 1-x/(Al/sub 2/O/sub 3/)/sub x/ MIM capacitor with an Al/sub 2/O/sub 3/ mole fraction of 0.14 is optimized. It provides a high capacitance density (3.5 fF//spl mu/m/sup 2/) and low VCC values (/spl sim/140 ppm/V/sup 2/) at the same time. In addition, small frequency dependence, low loss tangent, and low leakage current are obtained. Also, no electrical degradation was observed for (HfO/sub 2/)/sub 1-x/(Al/sub 2/O/sub 3/)/sub x/ MIM capacitors after N/sub 2/ annealing at 400/spl deg/C. These results show that the (HfO/sub 2/)/sub 0.86/(Al/sub 2/O/sub 3/)/sub 0.14/ MIM capacitor is very suitable for capacitor applications within the thermal budget of the back end of line process.  相似文献   

2.
Low-frequency noise measurements were performed on p- and n-channel MOSFETs with HfO/sub 2/, HfAlO/sub x/ and HfO/sub 2//Al/sub 2/O/sub 3/ as the gate dielectric materials. The gate length varied from 0.135 to 0.36 /spl mu/m with 10.02 /spl mu/m gate width. The equivalent oxide thicknesses were: HfO/sub 2/ 23 /spl Aring/, HfAlO/sub x/ 28.5 /spl Aring/ and HfO/sub 2//Al/sub 2/O/sub 3/ 33 /spl Aring/. In addition to the core structures with only about 10 /spl Aring/ of oxide between the high-K dielectric and silicon substrate, there were "double-gate oxide" structures where an interfacial oxide layer of 40 /spl Aring/ was grown between the high-K dielectric and Si. DC analysis showed low gate leakage currents in the order of 10/sup -12/ A(2-5 /spl times/ 10/sup -5/ A/cm/sup 2/) for the devices and, in general, yielded higher threshold voltages and lower mobility values when compared to the corresponding SiO/sub 2/ devices. The unified number-mobility fluctuation model was used to account for the observed 1/f noise and to extract the oxide trap density, which ranged from 1.8 /spl times/ 10/sup 17/ cm/sup -3/ eV/sup -1/ to 1, 3 /spl times/ 10/sup 19/ cm/sup -3/ eV/sup -1/ somewhat higher compared to conventional SiO/sub 2/ MOSFETs with the similar device dimensions. There was no evidence of single electron switching events or random telegraph signals. The aim of this paper is to present a general discussion on low-frequency noise characteristics of the three different high-K/gate stacks, relative comparison among them and to the Si-SiO/sub 2/ system.  相似文献   

3.
This authors present the effect of Al inclusion in HfO/sub 2/ on the crystallization temperature, leakage current, band gap, dielectric constant, and border traps. It has been found that the crystallization temperature is significantly increased by adding Al into the HfO/sub 2/ film. With an addition of 31.7% Al, the crystallization temperature is about 400-500/spl deg/C higher than that without Al. This additional Al also results an increase of the band gap of the dielectric from 5.8 eV for HfO/sub 2/ without Al to 6.5 eV for HfAlO with 45.5% Al and a reduced dielectric constant from 19.6 for HfO/sub 2/ without Al to 7.4 for Al/sub 2/O/sub 3/ without Hf. Considering the tradeoff among the crystallization temperature, band gap, and dielectric constant, we have concluded that the optimum Al concentration is about 30% for conventional self-aligned CMOS gate processing technology.  相似文献   

4.
We have studied ultrathin Al/sub 2/O/sub 3/ and HfO/sub 2/ gate dielectrics on Ge grown by ultrahigh vacuum-reactive atomic-beam deposition and ultraviolet ozone oxidation. Al/sub 2/O/sub 3/-Ge gate stack had a t/sub eq//spl sim/23 /spl Aring/, and three orders of magnitude lower leakage current compared to SiO/sub 2/. HfO/sub 2/-Ge allowed even greater scaling, achieving t/sub eq//spl sim/11 /spl Aring/ and six orders of magnitude lower leakage current compared to SiO/sub 2/. We have carried out a detailed study of cleaning conditions for the Ge wafer, dielectric deposition condition, and anneal conditions and their effect on the electrical properties of metal-gated dielectric-Ge capacitors. We show that surface nitridation is important in reducing hysteresis, interfacial layer formation and leakage current. However, surface nitridation also introduces positive trapped charges and/or dipoles at the interface, resulting in significant flatband voltage shifts, which are mitigated by post-deposition anneals.  相似文献   

5.
Low-frequency noise measurements were performed on p- and n-channel MOSFETs with HfO/sub 2/, HfAlO/sub x/ and HfO/sub 2//Al/sub 2/O/sub 3/ as the gate dielectric materials. The gate length varied from 0.135 to 0.36 /spl mu/m with 10.02 /spl mu/m gate width. The equivalent oxide thicknesses were: HfO/sub 2/ 23 /spl Aring/, HfAlO/sub x/ 28.5 /spl Aring/ and HfO/sub 2//Al/sub 2/O/sub 3/ 33 /spl Aring/. In addition to the core structures with only about 10 /spl Aring/ of oxide between the high-/spl kappa/ dielectric and silicon substrate, there were "double-gate oxide" structures where an interfacial oxide layer of 40 /spl Aring/ was grown between the high-/spl kappa/ dielectric and Si. DC analysis showed low gate leakage currents in the order of 10/sup -12/A(2-5/spl times/10/sup -5/ A/cm/sup 2/) for the devices and, in general, yielded higher threshold voltages and lower mobility values when compared to the corresponding SiO/sub 2/ devices. The unified number-mobility fluctuation model was used to account for the observed 1/f noise and to extract the oxide trap density, which ranged from 1.8/spl times/10/sup 17/ cm/sup -3/eV/sup -1/ to 1.3/spl times/10/sup 19/ cm/sup -3/eV/sup -1/, somewhat higher compared to conventional SiO/sub 2/ MOSFETs with the similar device dimensions. There was no evidence of single electron switching events or random telegraph signals. The aim of this paper is to present a general discussion on low-frequency noise characteristics of the three different high-/spl kappa//gate stacks, relative comparison among them and to the Si--SiO/sub 2/ system.  相似文献   

6.
Metal-insulator-semiconductor capacitors were fabricated using atomic vapor deposition HfO/sub 2/ dielectric with sputtered copper (Cu) and aluminum (Al) gate electrodes. The counterparts with SiO/sub 2/ dielectric were also fabricated for comparison. Bias-temperature stress and charge-to-breakdown (Q/sub BD/) test were conducted to examine the stability and reliability of these capacitors. In contrast with the high Cu drift rate in an SiO/sub 2/ dielectric, Cu in contact with HfO/sub 2/ seems to be very stable. The HfO/sub 2/ capacitors with a Cu-gate also depict higher capacitance without showing any reliability degradation, compared to the Al-gate counterparts. These results indicate that HfO/sub 2/ with its considerably high density of 9.68 g/cm/sup 3/ is acting as a good barrier to Cu diffusion, and it thus appears feasible to integrate Cu metal with the post-gate-dielectric ultralarge-scale integration manufacturing processes.  相似文献   

7.
We present a physical modeling of tunneling currents through ultrathin high-/spl kappa/ gate stacks, which includes an ultrathin interface layer, both electron and hole quantization in the substrate and gate electrode, and energy band offsets between high-/spl kappa/ dielectrics and Si determined from high-resolution XPS. Excellent agreements between simulated and experimentally measured tunneling currents have been obtained for chemical vapor deposited and physical vapor deposited HfO/sub 2/ with and without NH/sub 3/-based interface layers, and ALD Al/sub 2/O/sub 3/ gate stacks with different EOT and bias polarities. This model is applied to more thermally stable (HfO/sub 2/)/sub x/(Al/sub 2/O/sub 3/)/sub 1-x/ gate stacks in order to project their scalability for future CMOS applications.  相似文献   

8.
A stacked Y/sub 2/O/sub 3//HfO/sub 2/ multimetal gate dielectric with improved electron mobility and charge trapping characteristics is reported. Laminated hafnium and yttrium were sputtered on silicon followed by post-deposition anneal (PDA) in N/sub 2/ ambient. The new dielectric shows a similar scalability to HfO/sub 2/ reference. Analysis on flatband voltage shift indicates positive fixed charge induced by Y/sub 2/O/sub 3/. Excellent transistor characteristics have been demonstrated. Stacked Y/sub 2/O/sub 3//HfO/sub 2/, compared to HfO/sub 2/ reference with similar equivalent oxide thickness (EOT), shows 49% enhancement in transconductance and 65% increase in the peak electron mobility. These improvements may be attributed to better charge trapping characteristics of the multimetal dielectric.  相似文献   

9.
A novel high-/spl kappa/ silicon-oxide-nitride-oxide-silicon (SONOS)-type memory using TaN/Al/sub 2/O/sub 3//Ta/sub 2/O/sub 5//HfO/sub 2//Si (MATHS) structure is reported for the first time. Such MATHS devices can keep the advantages of our previously reported TaN/HfO/sub 2//Ta/sub 2/O/sub 5//HfO/sub 2//Si device structure to obtain a better tradeoff between long retention and fast programming as compared to traditional SONOS devices. While at the same time by replacing hafnium oxide (HfO/sub 2/) with aluminum oxide (Al/sub 2/O/sub 3/) for the top blocking layer, better blocking efficiency can be achieved due to Al/sub 2/O/sub 3/'s much larger barrier height, resulting in greatly improved memory window and faster programming. The fabricated devices exhibit a fast program and erase speed, excellent ten-year retention and superior endurance up to 10/sup 5/ stress cycles at a tunnel oxide of only 9.5 /spl Aring/ equivalent oxide thickness.  相似文献   

10.
The low-frequency noise has been studied in nMOSFETs with an HfO/sub 2/--SiO/sub 2/ gate stack, for different thickness of the SiO/sub 2/ interfacial layer (IL). It is observed that the 1/f-like noise in linear operation, is about 50 times higher in the HfO/sub 2/ devices with a 0.8-nm chemical oxide IL, compared with the 4.5-nm thermal oxide reference n-channel transistors. This is shown to relate to the correspondingly higher trap density in the dielectric material. In addition, it is demonstrated that the noise rapidly reduces with increasing thickness of the IL. From the results for a 2.1-nm SiO/sub 2/ IL, it is derived that at a certain gate voltage range, electron tunneling to a defect band in the HfO/sub 2/ layer may contribute to a pronounced increase in the flicker noise.  相似文献   

11.
The ultrathin HfO/sub 2/ gate dielectric (EOT<0.7 nm) has been achieved by using a novel "oxygen-scavenging effect" technique without incorporation of nitrogen or other "dopants" such as Al, Ti, or La. Interfacial oxidation growth was suppressed by Hf scavenging layer on HfO/sub 2/ gate dielectric with appropriate annealing, leading to thinner EOT. As the scavenging layer thickness increases, EOT becomes thinner. This scavenging technique produced a EOT of 7.1 /spl Aring/, the thinnest EOT value reported to date for "undoped" HfO/sub 2/ with acceptable leakage current, while EOT of 12.5 /spl Aring/ was obtained for the control HfO/sub 2/ film with the same physical thickness after 450/spl deg/C anneal for 30 min at forming gas ambient. This reduced EOT is attributed to "scavenging effect" that Hf metal layer consumes oxygen during anneal and suppresses interfacial reaction effectively, making thinner interface layer. Using this fabrication approach, EOT of /spl sim/ 0.9 nm after conventional self-aligned MOSFETs process was successfully obtained.  相似文献   

12.
Metal-ferroelectric-insulator-semiconductor (MFIS) capacitors with 390-nm-thick SrBi/sub 2/Ta/sub 2/O/sub 9/ (SBT) ferroelectric film and 8-nm-thick hafnium oxide (HfO/sub 2/) layer on silicon substrate have been fabricated and characterized. It is demonstrated for the first time that the MFIS stack exhibits a large memory window of around 1.08 V at an operation voltage of 3.5 V. Moreover, the MFIS memory structure suffers only 18% degradation in the memory window after 10/sup 9/ switching cycles. The excellent performance is attributed to the formation of well-crystallized SBT perovskite thin film on top of the HfO/sub 2/ buffer layer, as evidenced by the distinctive sharp peaks in X-ray diffraction (XRD) spectra. In addition to its relatively high /spl kappa/ value, HfO/sub 2/ also serves as a good seed layer for SBT crystallization, making the proposed Pt/SrBi/sub 2/Ta/sub 2/O/sub 9//HfO/sub 2//Si structure ideally suitable for low-voltage and high-performance ferroelectric memories.  相似文献   

13.
Metal-insulator-metal capacitors with atomic-layer-deposited HfO/sub 2/-Al/sub 2/O/sub 3/ laminated and sandwiched dielectrics have been compared, for the first time, for analog circuit applications. The experimental results indicate that significant improvements can be obtained using the laminated dielectrics, including an extremely low leakage current of 1/spl times/10/sup -9/ A/cm/sup 2/ at 3.3V and 125/spl deg/C, a high breakdown electric field of /spl sim/3.3MV/cm at 125/spl deg/C, good polarity-independent electrical characteristics, while retaining relatively high capacitance density of 3.13 fF//spl mu/m/sup 2/ as well as voltage coefficients of capacitance as low as -80 ppm/V and 100 ppm/V/sup 2/ at 100 kHz. The underlying mechanism is likely due to alternate insertions of Al/sub 2/O/sub 3/ layers that reduce the thickness of each HfO/sub 2/ layer, hereby efficiently inhibiting HfO/sub 2/ crystallization, and blocking extensions of grain boundary channels from top to bottom as well as to achieve good interfacial quality.  相似文献   

14.
A high capacitance density (C/sub density/) metal-insulator-metal (MIM) capacitor with niobium pentoxide (Nb/sub 2/O/sub 5/) whose k value is higher than 40, is developed for integrated RF bypass or decoupling capacitor application. Nb/sub 2/O/sub 5/ MIM with HfO/sub 2//Al/sub 2/O/sub 3/ barriers delivers a high C/sub density/ of >17 fF//spl mu/m/sup 2/ with excellent RF properties, while maintaining comparable leakage current and reliability properties with other high-k dielectrics. The capacitance from the dielectric is shown to be stable up to 20 GHz, and resonant frequency of 4.2 GHz and Q of 50 (at 1 GHz) is demonstrated when the capacitor is integrated using Cu-BEOL process.  相似文献   

15.
For the first time, we successfully fabricated and demonstrated high performance metal-insulator-metal (MIM) capacitors with HfO/sub 2/-Al/sub 2/O/sub 3/ laminate dielectric using atomic layer deposition (ALD) technique. Our data indicates that the laminate MIM capacitor can provide high capacitance density of 12.8 fF//spl mu/m/sup 2/ from 10 kHz up to 20 GHz, very low leakage current of 3.2 /spl times/ 10/sup -8/ A/cm/sup 2/ at 3.3 V, small linear voltage coefficient of capacitance of 240 ppm/V together with quadratic one of 1830 ppm/V/sup 2/, temperature coefficient of capacitance of 182 ppm//spl deg/C, and high breakdown field of /spl sim/6 MV/cm as well as promising reliability. As a result, the HfO/sub 2/-Al/sub 2/O/sub 3/ laminate is a very promising candidate for next generation MIM capacitor for radio frequency and mixed signal integrated circuit applications.  相似文献   

16.
A structural approach of fabricating laminated Dy/sub 2/O/sub 3/-incorporated HfO/sub 2/ multimetal oxide dielectric has been developed for high-performance CMOS applications. Top Dy/sub 2/O/sub 3/ laminated HfO/sub 2/ bilayer structure shows the thinnest equivalent oxide thickness (EOT) with a reduced leakage current compared to HfO/sub 2/. This structure shows a great advantage for the EOT scaling CMOS technology. Excellent electrical performances of the Dy/sub 2/O/sub 3//HfO/sub 2/ multimetal stack oxide n-MOSFET such as lower V/sub T/, higher drive current, and an improved channel electron mobility are reported. Dy/sub 2/O/sub 3//HfO/sub 2/ sample also shows a better immunity for V/sub t/ instability and less severe charge trapping characteristics. Two different rationed Dy/sub 2/O/sub 3//HfO/sub 2/ and HfO/sub 2/ n-MOSFET were measured by charge-pumping technique to obtain the interface state density (D/sub it/), which indicates a reasonable and similar interface quality. Electron channel mobility is analyzed by decomposing into three regimes according to the effective field. Reduced phonon scattering is found to be the plausible mechanism for higher channel mobility.  相似文献   

17.
A gate-first self-aligned Ge n-channel MOSFET (nMOSFET) with chemical vapor deposited (CVD) high-/spl kappa/ gate dielectric HfO/sub 2/ was demonstrated. By tuning the thickness of the ultrathin silicon-passivation layer on top of the germanium, it is found that increasing the silicon thickness helps to reduce the hysteresis, fixed charge in the gate dielectric, and interface trap density at the oxide/semiconductor interface. About 61% improvement in peak electron mobility of the Ge nMOSFET with a thick silicon-passivation layer over the CVD HfO/sub 2//Si system was achieved.  相似文献   

18.
TaN metal-gate nMOSFETs using HfTaO gate dielectrics have been investigated for the first time. Compared to pure HfO/sub 2/, a reduction of one order of magnitude in interface state density (D/sub it/) was observed in HfTaO film. This may be attributed to a high atomic percentage of Si-O bonds in the interfacial layer between HfTaO and Si. It also suggests a chemical similarity of the HfTaO-Si interface to the high-quality SiO/sub 2/-Si interface. In addition, a charge trapping-induced threshold voltage (V/sub th/) shift in HfTaO film with constant voltage stress was 20 times lower than that of HfO/sub 2/. This indicates that the HfTaO film has fewer charged traps compared to HfO/sub 2/ film. The electron mobility in nMOSFETs with HfO/sub 2/ gate dielectric was significantly enhanced by incorporating Ta.  相似文献   

19.
We have fabricated the fully silicided NiSi on La/sub 2/O/sub 3/ for n- and p-MOSFETs. For 900/spl deg/C fully silicided CoSi/sub 2/ on La/sub 2/O/sub 3/ gate dielectric with 1.5 nm EOT, the gate dielectric has large leakage current by possible excess Co diffusion at high silicidation temperature. In sharp contrast, very low gate leakage current density of 2/spl times/10/sup -4/ A/cm/sup 2/ at 1 V is measured for 400/spl deg/C formed fully silicided NiSi and comparable with Al gate. The extracted work function of NiSi was 4.42 eV, and the corresponding threshold voltages are 0.12 and -0.70 V for respective n- and p-MOSFETs. Electron and hole mobilities of 156 and 44 cm/sup 2//V-s are obtained for respective n- and p-MOSFETs, which are comparable with the HfO/sub 2/ MOSFETs without using H/sub 2/ annealing.  相似文献   

20.
The electrical characteristics of HfO/sub 2/ pMOSFETs prepared by B/sub 2/H/sub 6/ plasma doping and excimer laser annealing were investigated. Various metal gate electrodes were evaluated to protect the high-/spl kappa/ oxide during laser irradiation. Although the aluminum gate electrode showed superior reflectivity to the laser, the equivalent oxide thickness was increased due to the interaction between aluminum and HfO/sub 2/, which resulted in reduced capacitance. In contrast, the Al-TaN stacked gate showed good reflectivity up to laser energy of 500 mJ/cm/sup 2/ and improved capacitance was obtained compared with the Al gate. For the first time, the electrical characteristics of a HfO/sub 2/ pMOSFET with an Al-TaN gate fabricated by plasma doping and excimer laser annealing were demonstrated. It was also demonstrated that plasma doping and excimer laser annealing combined with a metal gate could be applied for high-/spl kappa/ oxide MOSFET fabrication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号