首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Nipissing phase was the last pre-modern high-water stage of the upper Great Lakes. Represented as either a one- or two-peak highstand, the Nipissing occurred following a long-term lake-level rise. This transgression was primarily an erosional event with only the final stage of the transgression preserved as barriers, spits, and strandplains of beach ridges. South of Alpena, Michigan, mid to late Holocene coastal deposits occur as a strandplain between Devils Lake and Lake Huron. The landward part of this strandplain is a higher elevation platform that formed during the final stage of lake-level rise to the Nipissing peak. The pre-Nipissing shoreline transgressed over Devils Lake lagoonal deposits from 6.4 to 6.1 ka. The first beach ridge formed ~ 6 ka, and then the shoreline advanced toward Lake Huron, producing beach ridges about every 70 years. This depositional regression produced a slightly thickening wedge of sediment during a lake-level rise that formed 20 beach ridges. The rise ended at 4.5 ka at the Nipissing peak. This peak was short-lived, as lake level fell > 4 m during the following 500 years. During this lake-level rise and subsequent fall, the shoreline underwent several forms of shoreline behavior, including erosional transgression, aggradation, depositional transgression, depositional regression, and forced regression. Other upper Great Lakes Nipissing platforms indicate that the lake-level change observed at Alpena of a rapid pre-Nipissing lake-level rise followed by a slower rise to the Nipissing peak, and a post-Nipissing rapid lake-level fall is representative of mid Holocene lake level in the upper Great Lakes.  相似文献   

2.
Shorelines of Lake Algonquin, the largest of the glacial lakes of the Great Lakes area, are well known in southern Ontario, but are sporadic and difficult to trace northward onto the Precambrian shield. Improved knowledge of the extent and uplift pattern for Algonquin shorelines is needed to support geophysical models of isostatic response, interpretation of glacial and glacial lake history, and the search by archeologists for evidence of Paleoindian activity, shown to be localized along its shoreline. The Sudbury basin is one of the few areas of mapping of Quaternary geology on the Canadian shield that provides a record of Algonquin lake phases. Meltwaters from the northward-receding ice front formed a series of deltas southward into the Sudbury basin in central Ontario around the time the Cartier I moraine was deposited. Instrumental surveys of deltas, bars, and shorebluffs carried out in the northern Sudbury basin delineate several discrete water planes. Correlation with previously surveyed and correlated shorelines on Manitoulin Island, southwest of Sudbury, indicates the presence of an upper Algonquin shoreline and features correlated to the Cedar Point, Payette, Sheguiandah, and Korah levels. Features southwest of the Sudbury basin at Nairn correlate with Korah and post-Korah water levels. Land between Nairn and Sudbury is too elevated to have been reached by the later Nipissing transgression. Similar shoreline sequences have been surveyed near North Bay, with results supporting the findings of this study.  相似文献   

3.
Recent shore erosion along the cliffed east side of Lake Huron in southwestern Ontario has left hanging valley terraces graded to former glacial and/or post-glacial lakes of the Huron basin. Plane table profiles along the valleys revealed terrace gradients of five to seven meters per kilometer. Elevations of the truncated ends of the terraces determined from surveyed profiles were supplemented by single point elevations in additional valleys. Extrapolation of the terrace gradients west-ward from these points to the published glacial Lake Algonquin tilted shoreline allowed the former position of the Algonquin shoreline to be estimated. The Lake Algonquin shoreline apparently was located about one kilQmeter west of the present shoreline but it was more irregular, no doubt being less mature in its development. Indentations in the former shoreline are indicated south of Bayfield, near the Lucknow River, and near Eighteen Mile River.  相似文献   

4.
Internal architecture and ages of 71 beach ridges in the Tahquamenon Bay embayment along the southeastern shore of Lake Superior on the Upper Peninsula of Michigan were studied to generate a late Holocene relative lake-level curve. Establishing a long-term framework is important to examine the context of historic events and help predict potential future changes critical for effective water resource management. Ridges in the embayment formed between about 4,200 and 2,100 calendar years before 1950 (cal. yrs. B.P.) and were created and preserved every 28 ± 4.8 years on average. Groups of three to six beach ridges coupled with inflections in the lake-level curve indicate a history of lake levels fluctuations and outlet changes. A rapid lake-level drop (approximately 4 m) from about 4,100 to 3,800 cal. yrs. B.P. was associated with a fall from the Nipissing II high-water-level phase. A change from a gradual fall to a slight rise was associated with an outlet change from Port Huron, Michigan/Sarnia, Ontario to Sault Ste. Marie, Michigan/Ontario. A complete outlet change occurred after the Algoma high-water-level phase (ca. 2,400 cal. yrs. B.P.). Preliminary rates of vertical ground movement calculated from the strandplain are much greater than rates calculated from historical and geologic data. High rates of vertical ground movement could have caused tectonism in the Whitefish Bay area, modifying the strandplain during the past 2,400 years. A tectonic event at or near the Sault outlet also may have been a factor in the outlet change from Port Huron/Sarnia to Sault Ste. Marie.  相似文献   

5.
Information about bloater (Coregonus hoyi) habitat in Lake Huron was limited to correlations between commercial yield and fishing depth, despite available information from other Great Lakes. We identified seasonal patterns of bloater habitat use in hypolimnetic waters surrounding the Bruce Peninsula, Lake Huron. We applied a delta-lognormal model to fisheries-independent survey data to evaluate whether bloater catch-per-unit-effort was related to depth, temperature, and bathymetric slope. A Bayesian variable selection technique indicated that bloater distribution was most strongly related to bottom depth and water temperature. Our study also reconfirmed a previously-described pattern of seasonal inshore movement during warmer months followed by a return to deeper offshore waters during cooler months. By focusing our sampling within the hypolimnion, we characterized intra-annual patterns of bloater habitat use with respect to a temperature gradient near the minimum thermal requirements reported for this species. Bloater distribution under these thermal conditions has not been previously reported.  相似文献   

6.
In 1980 filaments of the attached red alga Bangia atropurpurea were observed at two relatively remote sites in southwestern Lake Simcoe. This appears to be only the second recorded account of Bangia in a North American freshwater habitat other than the Laurentian Great Lakes. In 1982 Bangia was again noted in Lake Simcoe at the two original sites; however, in 1984 it was recorded at only one of these locations, apparently due to shoreline modification. Bangia probably entered Lake Simcoe via the Trent Canal system which connects Lakes Ontario and Huron.  相似文献   

7.
From 1980 through 1985, waters of the Great Lakes were sequentially sampled for dissolved, paniculate, and total trace elements. Major sampling occurred in 1980 for Lake Huron, in 1981 for Lakes Erie and Michigan, in 1983 for Lake Superior, and in 1985 for Lake Ontario. Great care was taken during collection, storage, and analysis to prevent sample contamination and to document any contamination occurring. Trace elements measured by atomic absorption techniques were silver, aluminum, arsenic, boron, barium, beryllium, bismuth, cadmium, cobalt, chromium, copper, iron, mercury, lithium, manganese, molybdenum, nickel, lead, antimony, selenium, tin, strontium, vanadium, and zinc. All results were field and laboratory blank corrected. Excluding aluminum, barium, iron, and strontium, concentrations of trace elements in most of the Great Lakes were a few ppb or less, with many elements being below one ppb. Element concentrations were highest in Lakes Erie and Michigan and lowest in Lakes Huron and Superior. All five Great Lakes had more than 50% of their total iron, aluminum, and manganese associated with paniculate matter.  相似文献   

8.
We combined data from two laboratories to increase the spatial extent of a genetic data set for lake whitefish Coregonus clupeaformis from lakes Huron and Michigan and saw that genetic diversity was greatest between lakes, but that there was also structuring within lakes. Low diversity among stocks may be a reflection of relatively recent colonization of the Great Lakes, but other factors such as recent population fluctuation and localized stresses such as lamprey predation or heavy exploitation may also have a homogenizing effect. Our data suggested that there is asymmetrical movement of lake whitefish between Lake Huron and Lake Michigan; more genotypes associated with Lake Michigan were observed in Lake Huron. Adding additional collections to the calibrated set will allow further examination of diversity in other Great Lakes, answer questions regarding movement among lakes, and estimate contributions of stocks to commercial yields. As the picture of genetic diversity and population structure of lake whitefish in the Great Lakes region emerges, we need to develop methods to combine data types to help identify important areas for biodiversity and thus conservation. Adding genetic data to existing models will increase the precision of predictions of the impacts of new stresses and changes in existing pressures on an ecologically and commercially important species.  相似文献   

9.
To support the 2012 Great Lakes Water Quality Agreement on reducing Lake Erie's phosphorus inputs, we integrated US and Canadian data to update and extend total phosphorus (TP) loads into and out of the St. Clair-Detroit River System for 1998–2016. The most significant changes were decreased loads from Lake Huron caused by mussel-induced oligotrophication of the lake, and decreased loads from upgraded Great Lakes Water Authority sewage treatment facilities in Detroit. By comparing Lake St. Clair inputs and outputs, we demonstrated that on average the lake retains 20% of its TP inputs. We also identified for the first time that loads from resuspended Lake Huron sediment were likely not always detected in US and Canadian monitoring programs due to mismatches in sampling and resuspension event frequencies, substantially underestimating the load. This additional load increased over time due to climate-induced decreases in Lake Huron ice cover and increases in winter storm frequencies. Given this more complete load inventory, we estimated that to reach a 40% reduction in the Detroit River TP load to Lake Erie, accounting for the missed load, point and non-point sources other than that coming from Lake Huron and the atmosphere would have to be reduced by at least 50%. We also discuss the implications of discontinuous monitoring efforts.  相似文献   

10.
Anthropogenic sources of total phosphorus (TP) and chloride (Cl?) to lakes and rivers have been issues of concern for many decades in the Great Lakes Basin with northern Boreal Shield headwater tributaries less well studied. In the Sturgeon River – Lake Nipissing – French River basin, a headwater basin of Georgian Bay, Lake Huron, water quality monitoring of major inflows to Lake Nipissing, the third largest inland lake located entirely within Ontario, is only available from the mid-1960s to the 1990s. During the period of 2015–2018, we conducted monthly water quality surveys of major and minor inflows for two water years and have generated the first chloride (Cl?) and total phosphorus (TP) elemental budgets for the lake. Review of available long-term concentration data indicate decreasing TP concentrations by decade in major inflows, but select inflows continue to exhibit concentrations above provincial objectives, including inflows from agricultural areas that are no longer part of provincial monitoring programs. Some inflows also show high average Cl? concentrations with potential influences (e.g., road salt, agricultural activities) to stream water quality throughout the year. Water and elemental budgets indicate that while specific runoff (l/s/km2) is quite similar across contributing catchments, yields of Cl? and TP (kg/ha/yr) are disproportionately higher in catchments with urban and agricultural activities. While uncertainties in the water balance and elemental yields remain, this first effort to quantify annual elemental budgets of Lake Nipissing highlights the need to develop community-based, spatially distributed water quality surveying for long-term ecosystem monitoring and future planning.  相似文献   

11.
Lipid concentrations of Bythotrephes cederstroemi were compared among three Great Lakes, Erie, Huron, and Michigan, in an effort to investigate the phenotypic plasticity in size displayed among the lakes. Four developmental stages were measured in Lakes Erie and Huron and two stages were studied in Lake Michigan. With a gravimetric extraction method, the total lipid concentration range (μg lipid μg dry weight−1, expressed as percent) for Bythotrephes was estimated to be 10–19%. Statistically significant differences were found in lipid concentrations of Bythotrephes among lakes and developmental stages. Lake Erie had significantly higher lipid concentration values than Lake Huron for stages 2 through 4, and had similar values to Lake Michigan for the analyzed stages 1 and 4. The first instar had indistinguishable lipid concentrations among Lakes Erie, Huron,and Michigan. Even though animals from Lake Erie were significantly smaller, the data suggest that they were not less well nourished. We hypothesize that selective mortality imposed by visual predators on larger Bythotrephes and the lack of deep water refuges in Lake Erie has encouraged the smaller size of Bythotrephes found there in comparison to those found in Lakes Huron and Michigan.  相似文献   

12.
Benthic communities in the Laurentian Great Lakes have been in a state of flux since the arrival of dreissenid mussels, with the most dramatic changes occurring in population densities of the amphipod Diporeia. In response, the US EPA initiated an annual benthic macroinvertebrate monitoring program on all five Great Lakes in 1997. Although historically the dominant benthic invertebrate in all the lakes, no Diporeia have been found in Lake Erie during the first 13 years of our study, confirming that Diporeia is now effectively absent from that lake. Populations have almost entirely disappeared from our shallow (< 90 m) sites in lakes Ontario, Huron, and Michigan. In Lake Ontario, three of our four deep (> 90 m) sites still supported Diporeia populations in 2009, with densities at those sites ranging between 96 and 198/m2. In Lake Michigan, populations were still found at six of our seven deep sites in 2009, with densities ranging from 57 to 1409/m2. Densities of Diporeia in 2009 at the four deep sites in Lake Huron were somewhat lower than those in Lake Michigan, ranging from 191 to 720/m2. Interannual changes in population size in Lake Huron and Lake Michigan have shown a degree of synchrony across most sites, with periods of rapid decline (1997-2000, 2003-2004) alternating with periods of little change or even increase (2001-2002, 2005-2009). There has been no evidence of directional trends at any sites in Lake Superior, although substantial interannual variability was seen.  相似文献   

13.
Selected shorelines and offshore shoals in Lakes Erie, Huron and Ontario were surveyed with a high frequency hydroacoustic system to investigate current spatial patterns of nuisance benthic filamentous algal (e.g., Cladophora) cover and stand height. Cladophora reached nuisance levels at all sites in Lakes Erie and Ontario, but not in Lake Huron or Georgian Bay. Despite clear gradients in coastal land cover, near shore water quality gradients were generally weak, and for Lakes Erie and Ontario, measures of near shore water quality were similar to that at offshore shoals. Hierarchical partitioning analysis suggested that while dreissenid mussel abundance appeared to be important in determining the magnitude of Cladophora standing crop, the joint contribution of catchment land cover, near shore water quality (nutrient levels and suspended matter) and dreissenid mussel abundance explained nearly 95% of the total variance in nuisance Cladophora standing crop observed in this study. Although the results from this study are necessarily correlative in nature and definition of causal relationships is not possible, these results provide corroborating evidence from sites across a gradient within and across the lower Great Lakes that is consistent with the operation of the near shore shunt model.  相似文献   

14.
Four of the Great Lakes and Lake St. Clair serve as part of the 5261 km coastline of the State of Michigan. Understanding of the relationship between Michigan residents and these Lakes are important for the creation of messages designed to instill the desire to become better stewards of the Michigan coastline. Focus groups totaling 100 Michigan residents were held across the State to learn how residents feel about general issues facing Michigan’s coastline. The two major themes that emerged from the focus groups were issues related to the rising lake waters and the need for education on coastline awareness and stewardship. Other important themes emerged for the focus areas of the research team and its funding organization. There were differences of opinion on some of the issues between residents of the Upper and Lower Peninsulas (for example, public access was not as important an issue in the Upper Peninsula) and also for residents of Lake Michigan versus Lake Huron coastlines in the Lower Peninsula (storms are causing more damage and erosion on the Lake Michigan beaches).  相似文献   

15.
Using the location, data, and water levels from flood events along the Canadian shore of the Great Lakes, flood damage thresholds were determined to identify and compare water levels at which static and storm-induced high water impact shoreline interests on several shore reaches of Lakes Erie, Huron, Ontario, and St. Clair. Spatial differences identified may be related to several factors, including: 1) nearshore bathymetries; 2) extent of residential development along low-lying shorelines; 3) degree of riparian adjustment to flooding; and 4) location relative to dominant wind or storm directions. Correlation analyses found that flood damage levels are more closely correlated to fluctuations in static levels on Lakes Ontario, Huron, and St. Clair, while flood damage levels are more closely correlated to maximum instantaneous water levels on Lake Erie. Correlation analyses of individual gauge data identified locations possibly more susceptible to storm surges. A conservative approach to determining flood damage thresholds is suggested, being based on a standard deviation below the mean of maximum instantaneous flood levels for a given gauge. The standard deviation threshold, while lower than current “critical levels” used in management, is more representative of the majority of flood damage levels than thresholds based on lowest maximum instantaneous lake levels. However, caution is urged in applying any critical level solely based on water level gauge information as Great Lakes flooding is a highly site-specific phenomenon influenced by meteorologic factors.  相似文献   

16.
An aerial distance sampling survey of double-crested cormorants (Phalacrocorax auritus) was conducted in the northern region of Lake Huron (North Channel; four largest lakes of Manitoulin Island; South Shore of Manitoulin Is. facing the main body of the lake) to assess the relative distribution, abundance and prey demand by cormorants on inland lake vs. coastal habitat. On a per area basis, the density (approx. 1-2 cormorants ? km− 2) and prey demand (approx. 1.2 kg ha− 1) of cormorants in the four inland lakes matched that of the North Channel. The South Shore had approximately half the density and prey demand as the other two areas. Cormorants on the inland lakes of Manitoulin Island represented 13% early in the season and a high of 33% of the total population for this region of Lake Huron later in the summer. Estimating regional distributions of cormorants within the Great Lakes basin is important because mapped nest colonies and nest counts are not representative of the actual distribution of foraging cormorants during and after the nesting season. There are two general conclusions to emerge from this survey. First, aquatic productivity from both Great Lakes coast and inland lakes contributes to trends in population and distribution of cormorants in the northern region of Lake Huron and perhaps elsewhere. Second, inland aquatic ecosystems are important throughout a season for foraging cormorants from the Great Lakes and may become more important as Great Lake productivity trends downward.  相似文献   

17.
This paper presents a synthesis of traditional and recently published work regarding the origin and evolution of the Great Lakes. It differs from previously published reviews by focusing on three topics critical to the development of the Great Lakes: the glaciation of the Great Lakes watershed during the late Cenozoic, the evolution of the Great Lakes since the last glacial maximum, and the record of lake levels and coastal erosion in modern times.The Great Lakes are a product of glacial scour and were partially or totally covered by glacier ice at least six times since 0.78 Ma. During retreat of the last ice sheet large proglacial lakes developed in the Great Lakes watershed. Their levels and areas varied considerably as the oscillating ice margin opened and closed outlets at differing elevations and locations; they were also significantly affected by channel downcutting, crustal rebound, and catastrophic inflows from other large glacial lakes.Today, lake level changes of about a 1/3 m annually, and up to 2 m over 10 to 20 year time periods, are mainly climatically-driven. Various engineering works provide small control on lake levels for some but not all the Great Lakes. Although not as pronounced as former changes, these subtle variations in lake level have had a significant effect on shoreline erosion, which is often a major concern of coastal residents.  相似文献   

18.
Over the last century geological studies of the ancestral Great Lakes have confirmed that the large surface load of the Laurentide ice sheet deformed the region causing tilting of ancient lake shorelines. Models of this glacial isostatic adjustment mechanism have promoted understanding of this process but have only included ice sheet loads as the source of earth deformation in the region. We describe a method, utilizing a model of glacial isostatic adjustment combined with GIS, that recreates the paleohydrology of the Great Lakes. Predictions include the extent of late glacial, postglacial, and Holocene lakes and their associated outlets and bathymetries. This predicted history of the Great Lakes is similar to that obtained from a century of detailed field studies but our method uses only the present digital elevation model, a prescribed ice sheet chronology, and an assumed earth viscoelastic rheology. Ancient lake bathymetry predictions provide an estimate of water loads associated with each lake. The effect of these lake loads upon vertical deformation of the Great Lakes region is shown to be small, less than 15 m, but not insignificant when compared to approximately 150 m of deformation forced by ice and ocean loads. Maximum lake-induced deformation is centered upon Lake Superior where water depths were greatest. Where topography is low relief, prediction of shoreline locations should include the lake loading effect as well as the ice and ocean loads.  相似文献   

19.
We compared the standing vegetation, seed banks, and substrate conditions in seven pairs of diked and undiked wetlands near the shores of Lake Michigan and Lake Huron, North America. Our analysis tested the null hypothesis that construction of artificial dikes has no effect on the vulnerability of Great Lakes coastal wetlands to non-native and native invasive species. Both the standing vegetation and seed banks in diked wetlands contained significantly more species and individuals of invasive plants. In addition, diked wetlands exhibited significantly higher levels of organic matter and nutrient levels, and significantly higher average pH. Two pervasive non-native invasive species in the Great Lakes region, Lythrum salicaria (purple loosestrife) and Phalaris arundinacea (reed canary grass) were significantly more abundant in diked wetlands. Typha spp. (cattail) also formed a much higher percent vegetation cover in the diked wetlands. Our results support the view that diking of shoreline wetlands modifies natural hydrologic regimes, leading to nutrient-rich aquatic environments that are vulnerable to invasion. The shallower, more variable water levels in non-diked wetlands, on the other hand, appear to favor another undesirable invasive species, Phragmites australis (common reed grass).  相似文献   

20.
A recent review of the Great Lakes Water Quality Agreement has concluded that while controls on phosphorus inputs to Lake Michigan achieved the desired effect in offshore waters, the nearshore region continues to suffer from elevated phosphorus levels. Failure to achieve trophic state goals in the nearshore is manifested in nuisance growth of Cladophora and attendant impacts on property owners, utilities, and the public health and welfare. This study focuses on a site in Lake Michigan near Milwaukee, Wisconsin, where nuisance growth of Cladophora and associated beach fouling occur regularly. A mechanistic model simulating Cladophora growth, suitable for guiding nutrient management in the Great Lakes nearshore, is presented. The model represents an update of the Canale and Auer framework, reflecting current understandings of Cladophora ecology and offering a user-friendly interface making the software more widely available to decision makers. This Great Lakes Cladophora Model (GLCM) is first validated for the Auer/Canale data set collected in 1979 at a site on Lake Huron and then for a data set developed in 2006 for a site on Lake Michigan. Model performance under the strikingly different forcing conditions (depth, light, phosphorus levels) characteristic of these two sites affirms the widespread applicability of the tool. The GLCM is then extended to examine the impacts of ecosystem perturbation (dreissenid colonization) on Cladophora growth and to future approaches to monitoring and management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号