首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Rivermouth ecosystems in the Laurentian Great Lakes represent complex hydrologic mixing zones where lake and river water combine to form biologically productive areas that are functionally similar to marine estuaries. As urban, industrial, shipping, and recreational centers, rivermouths are the focus of human interactions with the Great Lakes and, likewise, may represent critical habitat for larval fish and other biota. The hydrology and related geomorphology in these deltaic systems form the basis for ecosystem processes and wetland habitat structure but are poorly understood. To this end, we examined hydrogeomorphic structure and lake-tributary mixing in three rivermouths of intermediate size using water chemistry, stable isotopes, and current profiling over a five-month period. In rivermouths of this size, the maximum depth of the rivermouth ecosystem influenced water mixing, with temperature-related, density-dependent wedging and layering that isolated lake water below river water occurring in deeper systems. The inherent size of the rivermouth ecosystem, local geomorphology, and human modifications such as shoreline armoring and dredging influenced mixing by altering the propensity for density differences to occur. The improved scientific understanding and framework for characterizing hydrogeomorphic processes in Great Lakes rivermouths across a disturbance gradient is useful for conservation, management, restoration, and protection of critical habitats needed by native species.  相似文献   

2.
Rivermouth ecosystems are areas where tributary waters mix with lentic near-shore waters and provide habitat for many Laurentian Great Lakes fish and wildlife species. Rivermouths are the interface between terrestrial activities that influence rivers and the ecologically important nearshore. Stable isotopes of nitrogen (N) and carbon (C) in consumers were measured from a range of rivermouths systems to address two questions: 1) What is the effect of rivermouth ecosystems and land cover on the isotopic composition of N available to rivermouth consumers? 2) Are rivermouth consumers composed of lake-like or river-like C? For question 1, data suggest that strong relationships between watershed agriculture and consumer N are weakened or eliminated at the rivermouth, in favor of stronger relationships between consumer N and depositional areas that may favor denitrification. For question 2, despite apparently large riverine inputs, consumers only occasionally appear river-like. More often consumers seem to incorporate large amounts of C from either the nearshore or primary production within the rivermouth itself. Rivermouths appear to be active C and N processing environments, thus necessitating their explicit incorporation into models estimating nearshore loading and possibly contributing to their importance to Great Lakes biota.  相似文献   

3.
The Laurentian Great Lakes of North America have been a focus of environmental and ecosystem research since the Great Lakes Water Quality Agreement in 1972. This study provides a review of scientific literature directed at the assessment of Laurentian Great Lakes coastal ecosystems. Our aim was to understand the methods employed to quantify disturbance and ecosystem quality within Laurentian Great Lakes coastal ecosystems within the last 20 years. We focused specifically on evidence of multidisciplinary articles, in authorship or types of assessment parameters used. We sought to uncover: 1) where Laurentian Great Lakes coastal ecosystems are investigated, 2) how patterns in the disciplines of researchers have shifted over time, 3) how measured parameters differed among disciplines, and 4) which parameters were used most often. Results indicate research was conducted almost evenly across the five Laurentian Great Lakes and that publication of coastal ecosystems studies increased dramatically ten years after the first State of the Great Lakes Ecosystem Conference in 1994. Research authored by environmental scientists and by multiple disciplines (multidisciplinary) have become more prevalent since 2003. This study supports the likelihood that communication and knowledge-sharing is happening between disciplines on some level. Multidisciplinary or environmental science articles were the most inclusive of parameters from different disciplines, but every discipline seemed to include chemical parameters less often than biota, physical, and spatial parameters. There is a need for an increased understanding of minor nutrient, toxin, and heavy metal impacts and use of spatial metrics in Laurentian Great Lakes coastal ecosystems.  相似文献   

4.
During the past decade or so, many researchers, planners and managers the world over have propounded some version of “ecosystem approach” for problems and opportunities with the natural environment and renewable resources. Most of these approaches share the following features: a primary focus on ecological phenomena as opposed to engineering, economic, or jurisdictional phenomena; a perception of some self-regulatory capacity on the part of an ecosystem; a recognition of the marked responsiveness of many ecological systems to natural and human activities; and a readiness to strike a pragmatic compromise between detailed reductionistic understanding and more comprehensive, holistic meaning. Great Lakes workers are now trying to implement operational and institutional forms of ecosystem approach. Ten of these initiatives are assessed here, taken from all government levels, directed toward open lake, coastal, and hinterland components of the basin. This comparison illustrates the range of proposals now under consideration in the basin and identifies their common elements. We offer these features as defining criteria of an ecosystem approach with the suggestion that thorough-going synthesis or standardization be avoided. Flexible eclectic pragmatism is, we suggest, the most productive attitude toward Great Lakes environmental problems.  相似文献   

5.
Accounting for community opinions of environmental restoration is critical both for planning and evaluating these initiatives. While considerable research assesses the value of restoration through economic metrics focusing on expenditures or preferences for ecosystem services, these metrics may not adequately account for the sociocultural services that ecosystems provide communities, such as mental and physical health or recreational opportunities. To address this challenge, we explored the use of social media data to assess online discourse communities’ opinions about ecosystem services through a case study of Twitter mentions of sites targeted for restoration through the Great Lakes Restoration Initiative (GLRI). While there is evidence of the economic and ecological benefits of GLRI, little is known about how these benefits at sites targeted for funding are perceived by the public. From April through October 2019, we collected 40,000 tweets that mentioned an Area of Concern or a Great Lakes National Park that received GLRI funding. We used a mixed-methodological approach combining tweet content and sentiment analysis to determine themes of discussion and characterize online discourse communities’ opinions around these topics. Half of all tweets were about one of three Areas of Concern, and recreation was the most discussed theme with an overall positive sentiment. A metric accounting for the number of tweets and the sentiment of tweets was derived to understand community opinions of restoration at these areas. Our findings demonstrate the potential of social media data mining as a tool for examining online conversations about and engagement with the Great Lakes.  相似文献   

6.
Fisheries managers seek to sustain Great Lakes' fish populations in a large, complex lake‐watershed ecosystem responding to often competing issues: non‐indigenous species, resource allocation and environmental quality. Within the past 200 years, human activity has caused dramatic changes in the character of this ecosystem. Before the 1900s, the offshore fish communities in each of the Great Lakes were dominated by the piscivorous lake trout and burbot. The current fish fauna of the Great Lakes' basin includes 179 species representing 29 families in 18 orders and two classes of fish. Twenty‐five non‐indigenous fish species have established populations in the Great Lakes' ecosystem. Sustainable management of Great Lakes' fisheries depends on social, economic and ecological factors. Hundreds of millions of dollars are spent annually to protect and preserve Great Lakes' fisheries and their associated ecosystems. Management of Great Lakes' fisheries on a species‐by‐species basis is pointless. Recreational fishing provides larger economic benefits on the Great Lakes, compared to commercial fisheries. Further, quota management, even when practiced at levels well below maximum sustainable yield, does not lead to stable fish communities. Management will be constrained more by ecological reality than by economic forces, but ultimately a managed system comprised of both indigenous and non‐indigenous fishes is a logical objective.  相似文献   

7.
河流生态系统服务功能研究进展   总被引:2,自引:0,他引:2  
随着人口的增加和经济的快速发展,人类对河流的过度开发破坏了河流的生态过程,导致河流严重污染、水量大幅减少,河流的生态系统服务功能严重退化,制约了社会的可持续发展。通过论述关于河流生态系统服务功能的研究进展,包括分类方法、价值评估方法,并从气候变化和人类活动两方面深入分析影响河流生态系统服务功能的驱动因素,提出今后应以下几方面加强研究:①河流生态系统服务功能的认识;②河流生态系统结构和生态过程的认识,③河流生态系统服务功能的时空异质性;④人类活动和社会发展与河流生态系统服务功能之间的相互影响。  相似文献   

8.
Populations of stream organisms across trophic levels, including microbial taxa, are adapted to physical and biotic stream features, and are sentinels of geological and hydrological landscape processes and anthropogenic disturbance. Stream bacterial diversity and composition can have profound effects on resident and migratory species in Great Lakes tributaries. Study objectives were to characterize and compare the taxonomic composition and diversity of bacterial communities in 18 rivers of the Lake Michigan basin during April and June 2019 and to quantify associations with stream and watershed physical features and dominant landuse practices. River water was filtered, and genomic DNA was extracted from filtrate using antiseptic techniques. We performed high-throughput amplicon sequencing using the highly variable V4 region of the 16S rRNA gene to characterize microbial community composition and diversity. Effects of landscape-scale landuse, environmental variables and dispersal predictors (e.g., inter-stream distance) on community compositional differences were quantified. Greater than 90% of variation in bacterial relative abundance between rivers and time were attributed to 11 phyla representing 10,800 operational taxonomic units. Inter-stream geographic distance, stream hydrology, and variation in stream properties that were tied to patterns of watershed landuse were significantly associated with differences in bacterial community composition among streams at both sampling time periods. based on Bray-Curtis distances. Understanding how environmental characteristics and watershed-scale landuse influence lower trophic level stream communities such as bacteria will inform managers as biological indicators of ecosystem health, sources of disturbance, and current and future bottom-up trophic changes in coupled tributary-Great Lakes ecosystems.  相似文献   

9.
Seabirds are an integral part of Great Lakes ecosystems. However, most species are of no economic importance to humans and, therefore, they receive little direct management attention. Because many species of seabirds on the Great Lakes rely on fish as their primary food, factors that alter fish availability will also affect seabird populations. This paper examines how management practices may indirectly affect Great Lakes seabirds leading to changes in population sizes, diet composition, and destruction of breeding habitat. Consideration of the impacts of management actions on non-target groups, such as seabirds, will require the application of an ecosystem approach to management. Although the ecosystem approach philosophy has been widely accepted from a theoretical perspective, little tangible evidence exists that it has been routinely applied.  相似文献   

10.
Successful protection and restoration of Great Lakes nearshore ecosystems will likely rely on management of terrestrial resources along Great Lakes shorelines. However, relationships between biological communities and changing shoreline environmental properties are poorly understood. We sought to begin understanding the potential roles of shoreline geomorphological and land cover properties in structuring nearshore biological communities in the Laurentian Great Lakes. Despite high variability in densities (benthic macroinvertebrates and zooplankton) and catch per unit effort (CPUE, shallow water and nearshore fish) within and among lake areas, several biological community patterns emerged to suggest that nearshore aquatic communities respond to shoreline features via the influences of these features on nearshore substrate composition and stability. Benthic macroinvertebrate densities were not different between shoreline types, although they were generally lower at nearshore sites with less stable substrates. Shallow water fish CPUE and zooplankton densities were generally lower for nearshore areas adjacent to developed mid-bluff shorelines and sites characterized by less stable substrates. Larger fish CPUE appeared to be unresponsive to local shoreline and substrate properties of nearshore zones. The emergence of these patterns despite significant ecological differences among lake areas (e.g., productivity, community composition, etc.) suggests that shoreline development may have comparable influences on nearshore ecosystems throughout the Great Lakes, providing a terrestrialbased indicator of relative nearshore biological and ecological integrity.  相似文献   

11.
The Great Lakes basin ecosystem evolved after the retreat of the last ice sheet, about 10 000 years ago. Today, the complex of species present in the Great Lakes and much of the visible landscape bears little resemblance to that found some 400 years ago. Rather, the effects of various aspects of human development have caused major changes in the natural biodiversity. Lessons learned in the lower Great Lakes are applicable to many lakes around the world that have undergone agricultural, industrial and urban development in their drainage basins and have become managed, artificial ecosystems.  相似文献   

12.
Coastal sand dunes provide an array of important benefits that are supported by coastal geomorphic processes and location-specific ecosystems, including direct and indirect economic benefits to humans. Coastal sand dune ecosystems are ecologically important, but their specific values and uses are little studied, poorly understood, and underappreciated. Michigan, USA, is home to the largest land area of freshwater coastal sand dunes in the world. This study used an online survey that allowed participants to record the types of activities in which they engaged during visits and respond to questions about the importance of the cultural ecosystem services of coastal sand dunes. The survey captured the responses of 3610 individuals, a majority of whom rated scenic beauty, protection for future generations, protection of a unique ecosystem, and outdoor recreation as extremely important or very important. The survey results provide some preliminary insights into the role of cultural ecosystem services of coastal sand dunes in providing and sustaining benefits for humans and how these benefits and values are perceived by the public. These insights have important implications for policy makers responsible for coastal zone management in the Great Lakes region and in other areas characterized by coastal sand dunes ecosystems.  相似文献   

13.
14.
Ecological classifications of stream ecosystems have been used to develop monitoring programs, identify reference and impacted systems, and focus conservation efforts. One of the most influential, but highly variable, components of stream ecosystems is water temperature but few geographically broad-scale and long-term programs exist to assess and monitor temperatures. This study evaluated if existing ecological classifications could be used to categorize the similarities and differences in stream temperatures across the Ontario portion of the Great Lakes Basin. Concordance between the spatial variability in temperatures and an existing ecological classification would support the use of that classification to define areas with similar temperatures, guide the development of a monitoring program, and inform management programs. The five classifications evaluated were the ecoregions and ecodistricts defined in the National Ecological Framework for Canada, the ecoregions and ecodistricts defined in the Ecological Land Classification of Ontario, and the aquatic ecosystem units defined in the Aquatic Ecosystem Classification (AEC) for the Ontario portion of the Great Lakes Basin. Hierarchical linear modelling and corrected Akaike Information Criterion indicated that the ecodistrict classifications characterized more of the spatial variability in temperatures than the ecoregion and AEC classification but temperatures were more variable among sites within classes than between classes. Therefore, none of the existing ecological classifications could be used to characterize thermal variability. Future research should examine if the inability of the existing classifications to capture the thermal variability translates into inaccurate classification of other ecosystem components such as water quality, and macroinvertebrate and fish assemblages.  相似文献   

15.
Basin-scale assessment of fish habitat in Great Lakes coastal ecosystems would increase our ability to prioritize fish habitat management and restoration actions. As a first step in this direction, we identified key habitat factors associated with highest probability of occurrence for several societally and ecologically important coastal fish species as well as community metrics, using data from the Great Lakes Aquatic Habitat Framework (GLAHF), Great Lakes Environmental Indicators (GLEI) and Coastal Wetland Monitoring Program (CWMP). Secondly, we assessed whether species-specific habitat was threatened by watershed-level anthropogenic stressors. In the southern Great Lakes, key habitat factors for determining presence/absence of several species of coastal fish were chlorophyll concentrations, turbidity, and wave height, whereas in the northern ecoprovince temperature was the major habitat driver for most of the species modeled. Habitat factors best explaining fish richness and diversity were bottom slope and chlorophyll a. These models could likely be further improved with addition of high-resolution submerged macrophyte complexity data which are currently unavailable at the basin-wide scale. Proportion of invasive species was correlated primarily with increasing maximum observed inorganic turbidity and chlorophyll a. We also demonstrate that preferred habitat for several coastal species and high-diversity areas overlap with areas of high watershed stress. Great Lakes coastal wetland fish are a large contributor to ecosystem services as well as commercial and recreational fishery harvest, and scalable basin-wide habitat models developed in this study may be useful for informing management actions targeting specific species or overall coastal fish biodiversity.  相似文献   

16.
Historic and contemporary records of lake sturgeon (Acipenser fulvescens) occurrences in new York State have been assembled in this report to assist in planning and prioritizing the areas for restoration. This has become important because information about this threatened species is not easily assembled nor easily retrieved from the few remaining fishermen. Lake sturgeon were identified in 17 waters of New York State in the Great Lakes drainage including Lakes Erie, Ontario, Champlain, and the Niagara and St. Lawrence rivers. Two other rivers in the Laurentain Great Lakes drainage had self-sustaining populations, five others historically supported spawning runs, and five other waters had historical records of use or relict populations. Lake Erie provided the largest historic fishery for lake sturgeon in New York State (1,678 tonne reported in 1885) followed by Lake Ontario (292 tonne reported in 1890). All the major waters (the first five identified above) had large harvests, and two tributaries to the St. Lawrence River, the Grasse and Oswegatchie rivers, also provided commercial harvests. The Great Lakes fisheries were reduced to abandonment by the 1940s and the remaining ones were discontinued by the 1960s. Currently, lake sturgeon are self-sustaining at very low levels in the upper Niagara, St. Lawrence, and the Grasse rivers. The fish is protected from harvest in all areas but one.  相似文献   

17.
The Great Lakes–St. Lawrence River Basin Water Resources Compact (the Compact) was created to protect future water supplies and aquatic ecosystems in the Great Lakes. The Compact requires the eight Great Lakes state to regulate, among other things, large withdrawals of groundwater and surface water so that they do not negatively affect stream flows and ecosystems within the Great Lakes Basin. Thus, the Compact raises the possibility of increased restrictions on groundwater withdrawals in many locations throughout the Great Lakes region. However, restricting withdrawals is likely to encounter opposition from water users when such restrictions are viewed as an infringement on existing water use rights and/or as negatively impacting local economic development. Such conflicts could hinder effective implementation of state and regional water policy. This paper explores the application of a market-based environmental management tool called “Conservation Credit Offsets Trading (CCOT)” that could facilitate allocation of groundwater withdrawals, and develops a framework for guiding the implementation of CCOT within the context of a groundwater permitting system. Using a watershed in southwestern Michigan, this study demonstrates how bio-physical information and input from various local stakeholders were combined to aid groundwater policy designed to achieve the objective of no net (adverse) impact on stream ecosystems. By allowing flexibility through trading of conservation credit offsets, this groundwater policy tool appears to be more politically acceptable than traditional, less flexible, regulations. The results and discussion provide useful lessons learned with relevance to other areas in the Great Lakes Basin.  相似文献   

18.
Challenge condition requirements for testing of ballast water management systems (BWMS) are a poor fit with regard to protection of the Laurentian Great Lakes from aquatic invasive species, particularly with respect to protists. Though protists are abundant in the Great Lakes, required densities of cells (1000 cells/mL) meeting the 10–50 µm (“protist”) regulatory size class of the ballast water discharge standard (BWDS) are rarely achievable under ambient conditions. This deficiency drives certification testing to aquatic systems dissimilar to the Great Lakes or necessitates manipulation of intake water during testing. This requirement is unnecessary because: (1) protist cells both within and smaller than the regulatory size class are largely equivalent in their challenge to BWMS performance and their threat to ecosystems; and (2) lower densities of cells in challenge water can meet regulatory requirements; i.e. at least 100 live cells/mL in untreated discharge (control) water are required for test validity. We describe how current requirements for high densities of protists within the regulatory size class as a challenge condition in certification testing unnecessarily undermine vetting of BWMS performance and operation. We posit a range of alternatives and identify approaches to modifying challenge requirements to alleviate problems while protecting test rigor and relevancy to the BWDS. Without a change to these requirements there will be no certification testing in freshwater resources like the Great Lakes without substantial intake stream manipulation during testing, and therefore, little way to confirm whether a BWMS will perform in the Great Lakes and other freshwater systems.  相似文献   

19.
Based on a paired analysis, we describe a method for evaluating the potential of rivers with different physical characteristics to provide ecosystem services. Scores based on an extensive scientific literature review and expert opinion were applied to four sets of rivers in Scotland, with each pair comprising one river with a statutory nature conservation designation and one where such designations were largely absent. Data on physical habitat features and land cover were extracted manually from Google Earth?, based upon a previously published method expanded here to take account of cultural ecosystem services. Twenty physical habitat features and land‐cover types and 13 ecosystem services (four provisioning, three regulating, and six cultural) were used in the analysis. Notable developments on the earlier approach included the full integration of cultural ecosystem services alongside provisioning, regulating, and supporting services; introduction of confidence levels to river feature–ecosystem service linkages; and incorporation of valley floor surface area into one of the two scoring systems. Ecosystem scores for 500 m reaches along each river from source to mouth were calculated using Microsoft Excel, with results showing high reach‐to‐reach variability within individual rivers and significant differences between paired rivers. The four rivers with statutory nature conservation designations provided a greater range and typically higher ecosystem service scores than those with little or no designation, a result that has significant implications for river conservation and for framing catchment‐level conservation policy.  相似文献   

20.
Crayfish represent important links in aquatic food webs because they have diverse, omnivorous diets and are an important source of energy for fishes and birds. Crayfish have the ability to increase sediment transport through bioturbation, some are considered ecosystem engineers due to their burrowing habits, and crayfish invasions have been linked to large declines in biodiversity and changes in ecosystem structure and function. Despite their ecological importance and the threats that invasive crayfishes pose, the distribution of crayfishes in the Laurentian Great Lakes is not well studied. Here, we report on four years of intensive crayfish surveys in the southwestern portion of the Lake Michigan Basin, a region with diverse freshwater ecosystems and few previous records of crayfish distribution. From 2015 to 2018, baited minnow traps and SCUBA were used to document the distribution and abundance of crayfish across streams, rivers, inland lakes, and Lake Michigan. Six species of crayfish were captured, including two invasive species. The invaders are the widely distributed and abundant Faxonius rusticus (rusty crayfish) and Procambarus clarkii (red Swamp crayfish), a species early in the invasion phase. Native species were found in fewer habitat types and were less abundant than invasive F. rusticus. Comparing our results to previous sampling showed that native crayfish distribution and diversity have declined at the same time that F. rusticus has spread over recent decades. There is potential for new and recently introduced invaders, such as the red swamp crayfish, to further alter ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号