首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
The FeSiBC amorphous powder cores were fabricated using powders of the FeSiBC amorphous ribbons which were mechanically crushed for a short time, and the relationship between magnetic properties and powder particle sizes was evaluated. The saturation magnetization Bs of the amorphous Fe82Si2B15C1 alloy was 1.62 T, which provided a superior dc-bias property for the powder cores. Meanwhile, a stable permeability up to high frequency range over 10 MHz and the low core loss of 400 kW/ma at f=50 kHz and Bm =0.1 T were obtained. These excellent high-frequency magnetic properties of the FeSiBC amorphous powder cores could be attributed to the effective electrical insulation between the FeSiBC amorphous powders made by mechanical crushing.  相似文献   

2.
Fe73.5Cu1Nb3Si15.5B7 nanocrystalline powder cores with different particle sizes ranging from 10 to 125μm were fabricated by cold-pressing techniques.The cores exhibited increased core loss Pcvand decreased initial permeabilityμiwith addition of fine powders below 50μm in size,and the content should be less than 40mass%.It was thought to be closely related to the high coercive force Hcdue to the stresses generated during the crushing process and high demagnetization fields of small powders.Furthermore,modifying the alloy compositions by adding defined amount of Ni could improve the soft magnetic properties,including superior characteristics of permeability under high direct current(DC)bias field and comparable low core loss at high frequency.  相似文献   

3.
Scandia doped tungsten powders were prepared by spray drying combined with two-step hydrogen reduction.The particle size of doped tungsten powder,powder morphology and doped tungsten matrix were characterized by scanning electron microscope,X-ray diffrac-tion and laser diffraction particle size analyzer,respectively.The reduction behavior of Sc2O3 doped tungsten oxide and the effect of Sc2O3 on the property of tungsten powder were studied by the temperature programmed reduction.The experimental results showed that the pre-cursor powders prepared by spray drying had spherical shape.The addition of Sc2O3 could decrease the reduction temperature of tungsten oxide.The scandia doped tungsten powder had sub-micrometer size in the range of 0.1 to1 μm and scandium distributed evenly in the powder.By using this kind powder,sub-microstructure cathode matrices with semispherical grains and homogenous distribution of scan-dium were obtained.  相似文献   

4.
The coercivity enhancement of ball-milled Nd2Fe14B/α-Fe nanocomposite magnets was investigated. It was found that the coercivity could be enhanced through mixing a small amount of Nd powder with as-milled Fe-rich Nd-Fe-B powders. The annealed samples were investigated by means of X-ray diffraction, scanning electron microscopy and magnetic measurement systems. Under annealing, some of Nd powders promoted the formation of hard magnetic phase Nd2Fe14B. On the other hand, a few of Nd would diffuse into the interface of Nd2Fe14B/α-Fe nanocomposite to compensate for the loss of the interfacial magnetic anisotropy. These two features are all beneficial to the coercivity.  相似文献   

5.
Metal foams with porosities greater than 90 pct were prepared by a novel powder metallurgy route using a polymeric vehicle. Coarse titanium powder and fine carbonyl iron powder were tested. The powders were blended with each component of a two-part polyol-isocyanate foaming system, and the resulting suspensions were mixed and allowed to expand. Although the resulting polymer-metal foam was closed cell, particles were not retained in the windows. Upon pyrolysis to remove the resin, the windows opened and the final sintered metal foam was reticulated. Such foams present very low sintered density and are correspondingly weak after sintering but offer a fine reticulated structure with cell diameters in the region of 100 to 200 μm. They may have applications in the areas of catalysis, biomaterials, and composites.  相似文献   

6.
Study was made on the effect of surface modification on the behaviors of cerium oxide nanopowders.A surfactant-sodium dodecyl sulfate(C12H25SO4Na)was used to modify the surface of CeO2 powder particles.The unmodified and modified CeO2 powders were characterized by using a powder comprehensive characteristic tester,laser particle size analyzer,specific surface area tester,X-ray diffraction tester,and a scanning electron microscope.The testing and analysis results showed that C12H25SO4Na surface modification might increase the flowability and dispersity,and decrease the specific surface area and agglomeration of CeO2 powders.The mechanism of the surface modification of CeO2 powder particles was also discussed.  相似文献   

7.
The full densification polycrystalline cerium hexaboride (CeB6) cathode material was prepared by using the spark plasma sintering (SPS) method in an oxygen free system. The starting precursor nanopowders with an average grain size of 50 nm were prepared by high-energy ball milling. The ball-milled nanopowder was fully densified at 1550 °C under 50 MPa, which was about 350 °C lower than the conventional hot-pressing method and it was also lower than that of coarse powder under the same sintering condition. The mechanical properties of nanopowder sintered samples were significantly better than that of coarse powder, e.g., the flexural strength and Vickers hardness were 211% and 51% higher than that of coarse powder, respectively. The electron backscattered diffraction (EBSD) result showed that the (100) fiber texture could be fabricated by the ball-milled nanopowder sintered at 1550 °C and the thermionic emission current density was measured to be 16.04 A/cm2 at a cathode temperature of 1873 K.  相似文献   

8.
Ultrafine powders of scandia-stabilized zirconia(ScSZ) were prepared by the co-precipitation method, using ZrOCl_2 and ScO_2 as raw materials and NH_3·H_2O as a precipitant. In this paper, the optimum process parameters were investigated. The p H of the reaction solution directly impacted the precursor structure, which further affected the obtained crystal forming. Many experiment methods of thermogravimetric analysis and differential thermal analysis(TG-DTA), X-ray diffraction(XRD), transmission electron microscopy(TEM), Raman spectroscopy(Raman), and nitrogen adsorption were employed to characterize the Sc SZ powder. The structure transition mechanism from cubic to rhombohedral was discussed. In addition, the electrical conductivity of the powders was also studied after dry-pressing and calcining. The results showed that the structure of Sc SZ with complete crystal surface belonged to the cubic phase. The crystallite sizes of the powders prepared are about 60–80 nm, meet the conditions of(D_(90)–D_(10))/2D_(50)≤1, and exhibited the good flow properties. The electrical conductivity was more than 190 m S/cm in air measured at 850 oC.  相似文献   

9.
The effects of powder particle size on the densification and microstructure of iron powder in the direct laser sintering process were investigated. Iron powders with particle sizes ranging from 10 to 200 μm were used. It was found that the sintered density increases as the laser energy input is increased. There is, however, a saturation level at which higher density cannot be obtained even at very intensive energy input. This saturation density increases as the size of the iron particles decreases. Meanwhile fine powders with narrow particle size distributions have a tendency toward agglomeration, and coarse powders with broad particle size distributions have a tendency toward segregation, both of them resulting in lower attainable density. In order to investigate the role of particle size, a “densification coefficient (K)” was defined and used. This coefficient depends on the particle size and the oxygen content of iron powder. The results of this investigation demonstrate that the presence of oxygen significantly influences the densification and pore morphology of laser-sintered iron. At higher oxygen concentrations, the iron melt pool is solidified to agglomerates, and formation of pores with orientation toward the building direction is more likely to occur. When the oxygen concentration is kept constant, the densification coefficient decreases with decreasing the particle size, meaning the densification kinetics enhances. This article presents the role of powder characteristics and the processing parameters in the laser sintering of iron powder as a model material. The mechanism of particle bonding and microstructural features of laser-sintered parts are addressed.  相似文献   

10.
The formation behaviors of terbium sesquisulfide( Zb2S3 )and holmium sesquisulfide( Ho2S3 )synthesized via the sulfurization of their oxide powders using CS2 gas in the range of temperature 673 to 1323 K were investigated. In the sulfurization of Tb4O7 powder, Tb2O3 and Zb2OES were formed in the initial stage of reaction, and α-Tb2S3 was finally formed at higher temperature. For long sulfurization time of 8 h, single-phase α-Tb2S3 could be synthesized at 1323 K. In the sulfurization of Ho2O3 powder using CS2 gas, only Ho2O2S was formed as an intermediate product. At a sulfurization temperature above 873 K, Ho2O2 S was formed in the initial stage of reaction, and single-phase δ-Ho2S3 was formed at 1323 K for 8 h instead of Ho2O2S. Furthermore, the influence of the addition of carbon black to the sulfurization of Ho2O3 powder using CS2 gas was investigated, and the result implied that the reactions were accelerated slightly by the addition of carbon black.  相似文献   

11.
A novel process was developed for scalable fabrication of micro-fine spherical Ti–6Al–4V alloy powders. The hydrogenation-treated Ti–6Al–4V alloy ingot was mechanically crushed into particles and then sieved into three size grades. The powders were separately sent through the radio frequency (RF) argon plasma system for spheroidisation. The fabrication process and powder characteristics were investigated. The results indicate the alloy ingot upon hydrogenation treatment can be efficiently crushed into fine particles with size of 5–76?μm. During RF plasma processing, the powders are found to be greatly refined due to hydrogen decrepitation with subsequent transformation into spherical morphology. The effect of hydrogen decrepitation on particle refinement is impaired with decreasing particle size of feed powders. The spherical powders exhibit a narrow particle size distribution and the average size is in the range of 8.2–27.9?μm. The spheroidised powders mainly consist of β-Ti and TiH1.5.  相似文献   

12.
SincethenanocrystallinesoftmagneticalloyFe73 .5Cu1Nb3Si13 .5B9withexcellentsoftmagneticpropertieswasdevelopedbyYoshizawaYetalin1988[1] ,itsmagnetictheory ,chemicalcomposition ,preparationtechnology ,structureandtransitionaswellasspreadingapplicationwerestudiedexte…  相似文献   

13.
An attempt was made to study the effect of Mn addition on the formation of supersaturated solid solution of Co and Fe in Cu during ball milling and precipitation of the solute-rich phases during subsequent annealing of the ball-milled product. It is demonstrated that the addition of Mn in the ternary CuFeCo powder blend enhances the metastable solubility of Fe and Co in Cu and facilitates the formation of the nanocrystalline supersaturated single-phase solid solution. Field emission–scanning electron microscopy (FE-SEM) also revealed notable influence of Mn on the morphological evolution of the ball-milled and annealed alloy powders. X-ray diffraction (XRD) analysis revealed that the FeCo phase having the bcc Bravais lattice forms after annealing at and above 620 K (350 °C) in both alloys. Estimation of magnetic properties showed that Mn addition in the CuFeCo alloy improved the coercivity, remanence, and magnetic saturation.  相似文献   

14.
采用水雾化方法分别制备Fe74Al4Sn2P10C2B4Si4非晶粉末和Fe17Ni81Mo2粉末,再将两种粉末混合制备复合磁粉芯,对复合磁粉芯的性能进行了研究.通过混合可以得到品质因数较高、电感频率特性较好的复合磁粉芯,并且随着混合比例的变化,可以获得一系列具有连续磁性能的磁粉芯.当非晶粉末比例在50%(质量分数,下同)以下,随着非晶粉末质量百分比的增大,复合磁粉芯性能的变化速度较快;当非晶粉末比例达到50%以上,随着非晶粉末质量百分比的增大,复合磁粉芯性能的变化速度较慢.分析认为,复合磁粉芯性能的变化规律与Fe17Ni81Mo2粉末及非晶粉末特性及其在磁粉芯中的作用有关.  相似文献   

15.
The structural evolution in mechanically alloyed binary aluminum-iron powder mixtures containing 1, 4, 7.3, 10.7, and 25 at. pct Fe was investigated using X-ray diffraction (XRD) and electron microscopic techniques. The constitution (number and identity of phases present), microstructure (crystal size, particle size), and transformation behavior of the powders on annealing were studied. The solid solubility of Fe in Al has been extended up to at least 4.5 at. pct, which is close to that observed using rapid solidification (RS) (4.4 at. pct), compared with the equilibrium value of 0.025 at. pct Fe at room temperature. Nanometer-sized grains were observed in as-milled crystalline powders in all compositions. Increasing the ball-to-powder weight ratio (BPR) resulted in a faster rate of decrease of crystal size. A fully amorphous phase was obtained in the Al-25 at. pct Fe composition, and a mixed amorphous phase plus solid solution of Fe in Al was developed in the Al-10.7 at. pct Fe alloy, agreeing well with the predictions made using the semiempirical Miedema model. Heat treatment of the mechanically alloyed powders containing the supersaturated solid solution or the amorphous phase resulted in the formation of the Al3Fe intermetallic in all but the Al-25 at. pct Fe powders. In the Al-25 at. pct Fe powder, formation of nanocrystalline Al5Fe2 was observed directly by milling. Electron microscope studies of the shock-consolidated mechanically alloyed Al-10.7 and 25 at. pct Fe powders indicated that nanometer-sized grains were retained after compaction.  相似文献   

16.
采用Fe-6.5%Si合金粉与Si-22%Fe合金粉末,经机械合金化制备了Fe-13.95%Si固溶体合金。由碰撞频率、速率与球磨工艺条件的理论关系推导出了球料比的最佳值。利用XRD、SEM和EDX手段对球磨后的Fe—Si粉体进行了结构、形貌及成份表征。结果表明:混合粉体球磨12h可实现机械合金化,合金化的粉体为α—Fe(Si)过饱和固溶体,颗粒尺寸为0.5~15μm,显微组织为纳米晶结构,平均晶粒尺寸约为18nm。  相似文献   

17.
Book Review     
none 《粉末冶金学》2013,56(3):160-161
Abstract

Currently available compaction-ready aluminium powders enable sintered preforms to be readily produced by the powder metallurgy route. Aluminium bearing materials with good sliding properties can be produced by sintering-in abrasion-resistant particles or by using alloy powders with homogeneously distributed lead additions. Reactively ground and mechanically alloyed granulates with dispersoid particles of oxides, carbides, and inter-metallic compounds provide high-temperature PM materials with improved properties. New techniques for powder production provide aluminium alloy powders with extraordinary metallurgical effects within the particles and controlled properties. The consolidation of rapidly solidified aluminium alloy powders into high-strength PM semiproducts has considerably enlarged the potential of aluminium powder metallurgy. The aims of numerous worldwide development projects in powder metallurgy are to improve conventional aluminium alloys and develop new alloys which cannot be produced by the . traditional melting route. PM/0253  相似文献   

18.
超高压固结成形方法是非常有应用前景的大块非晶制备方法之一。利用该技术在金刚石压机上对Al82Ni10Y8雾化合金粉末进行了致密化。通过X射线衍射仪、扫描电镜和透射电镜对粉末及大块合金试样的物相、形貌及微观结构进行了分析,结果表明,所制备的块体材料保持了原始粉末状态的非晶及纳米晶结构。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号