首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
 Martensitic stainless steel containing Cr of 12% to 18% (mass percent) are common utilized in quenching and tempering processes for knife and cutlery steel. The properties obtained in these materials are significantly influenced by matrix composition after heat treatment, especially as Cr and C content. Comprehensive considered the hardness and corrosion resistance, a new type martensitic stainless steel 6Cr15MoV has been developed. The effect of heat treatment processes on microstructure and mechanical properties of 6Cr15MoV martensitic stainless steel is emphatically researched. Thermo-Calc software has been carried out to thermodynamic calculation; OM, SEM and TEM have been carried out to microstructure observation; hardness and impact toughness test have been carried out to evaluate the mechanical properties. Results show that the equilibrium carbide in 6Cr15MoV steel is M23C6 carbide, and the M23C6 carbides finely distributed in annealed microstructure. 6Cr15MoV martensitic stainless steel has a wider quenching temperature range, the hardness value of steel 6Cr15MoV can reach to HRC 608 to HRC 616 when quenched at 1060 to 1100 ℃. Finely distributed carbides will exist in quenched microstructure, and effectively inhabit the growth of austenite grain. With the increasing of quenching temperature, the volume fraction of undissolved carbides will decrease. The excellent comprehensive mechanical properties can be obtained by quenched at 1060 to 1100 ℃ with tempered at 100 to 150 ℃, and it is mainly due to the high carbon martensite and fine grain size. At these temperature ranges, the hardness will retain about HRC 592 to HRC 616 and the Charpy U-notch impact toughness will retain about 173 to 20 J. A lot of M23C6 carbides precipitated from martensite matrix, at the same time along the boundaries of martensite lathes which leading to the decrease of impact toughness when tempered at 500 to 540 ℃. The M3C precipitants also existed in the martensite matrix of test steel after tempered at 500 ℃, and the mean size of M3C precipitates is bigger than that of M23C6 precipitates.  相似文献   

2.
The effect of main alloying elements on thermal wear of cast hot-forging die steels was studied. The wear mechanism was discussed. The results show that alloying elements have significant influences on the thermal wear of cast hot-forging die steels. The wear rates decrease with an increase in chromium content from 3% to 4% and molybdenum content from 2% to 3%, respectively. With further increase of chromium and molybdenum contents, chromium slightly reduces the wear resistance and molybdenum severely deteriorates the wear resistance with high wear rate. Lower vanadium/carbon ratio (1.5-2.5) leads to a lower wear resistance with higher wear rate. With an increase in vanadium/carbon ratio, the wear resistance of the cast steel substantially increases. When vanadium/carbon ratio is 3, the wear rate reaches the lowest value. The predominant mechanism of thermal wear of cast hot-forging die steels are oxidation wear and fatigue delamination. The Fe2O3 and Fe3O4 or lumps of brittle wear debris are formed on the wear surface.  相似文献   

3.
 Dry sliding wear tests of a Cr-Mo-V cast hot-forging die steel was carried out within a load range of 50-300 N at 400 ℃ by a pin-on-disc high-temperature wear machine. The effect of heat treatment process on wear resistance was systematically studied in order to select heat treatment processes of the steel with high wear resistance. The morphology, structure and composition were analyzed using scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS); wear mechanism was also discussed. Tribo-oxide layer was found to form on worn surfaces to reduce wear under low loads, but appear inside the matrix to increase wear under high loads. The tribo-oxides were mainly consisted of Fe3O4 and Fe2O3, FeO only appeared under a high load. Oxidative mild wear, transition of mild-severe wear in oxidative wear and extrusive wear took turns to operate with increasing the load. The wear resistance strongly depended on the selection of heat treatment processes or microstructures. It was found that bainite presented a better wear resistance than martensite plus bainite duplex structure, martensite structure was of the poorest wear resistance. The wear resistance increased with increasing austenizing temperature in the range of 920 to 1120 ℃, then decreased at up to 1220 ℃. As for tempering temperature and microstructure, the wear resistance increased in following order: 700 ℃ (tempered sorbite), 200 ℃ (tempered martensite), 440 to 650 ℃ (tempered troostite). An appropriate combination of hardness, toughness, microstructural thermal stability was required for a good wear resistance in high-temperature wear. The optimized heat treatment process was suggested for the cast hot-forging steel to be austenized at 1020 to 1120 ℃, quenched in oil, then tempered at 440 to 650 ℃ for 2 h.  相似文献   

4.
 The effect of austempering temperature on the microstructure and properties of a high chromium white cast iron was investigated with the Rietveld refinement method. The result shows that the upper bainite exists in the sample austempered at 623 K and the martensite, lower bainite, M7C3, and retained austenite exist in the samples austempered at 563 K and 593 K. The relative content of the retained austenite increases with increasing the austempering temperature from 563 K to 623 K. The higher hardness, impact toughness and impact abrasive wear resistance can be obtained for the specimen austempered at 593 K.  相似文献   

5.
A great amount of iron grinding balls in tube mills have been consumed. Under this impact abrasive wear working condition, the failure of wear resistant alloying white irons grinding balls is mainly caused by fatigue spalling. The impact wear resistance of martensitic high chromium cast iron (Cr of 15%) is not high sometimes, but its cost is not low. Thus, medium Cr-Si wear resistant cast iron is recommended. The influence of the iron on impact fatigue resistance and impact wear resistance is pronounced. Ball-on-ball impact fatigue test and high stress impact wear test of the grinding balls have been carried out. The results show that the impact fatigue resistance (IFR) and impact wear resistance (IWR) of medium Cr-Si cast iron are superior to those of martensitic high chromium cast iron (Cr of 15%). The main reasons are that (1) the stress in medium Cr-Si cast iron is released in the as-cast state; (2) the matrix is fine pearlite with better toughness and plasticity; (3) the pearlite is more stable compared with a retained austenite under repeated impact load and less phase transformation can take place; (4) high silicon content im- proves the morphology of eutectic carbide; (5) there is no seeondary carbide which results in less crack sources. All these factors are beneficial to improvement of impact fatigue spalling resistance. The eutectic carbide M7C3 is the main constituent to resist wear.  相似文献   

6.
Microstructure and property of bearing steel with and without nitrogen addition were investigated by microstructural observation and hardness measurement after different heat treatment processing. Based on the microstructural observation of both 9Cr18 steel and X90N steel,it was found that nitrogen addition could effectively reduce the amount and size of coarse carbides and also refine the original austenite grain size. Due to addition of nitrogen,more austenite phase was found in X90N steel than in 9Cr18 steel. The retained austenite of X90N steel after quenching at 1 050 °C could be reduced from about 60% to about 7% by cold treatment at-73 °C and subsequent tempering,and thus finally increased the hardness up to 60 HRC after low temperature tempering and to 63 HRC after high temperature tempering. Furthermore,both the wear and corrosion resistance of X90N steel were found much more superior than those of 9Cr18 steel,which was attributed to the addition of nitrogen. It was proposed at last that nitrogen alloying into the high chromium bearing steel was a promising way not only to refine the size of both carbides and austenite,but also to achieve high hardness,high wear property and improved corrosion resistance of the stainless bearing steel.  相似文献   

7.
The effect of processing parameters such as hot rolling and heat treatment on microstructure and mechanical properties was investigated for a new 0.27mass% C and Ni,Mo-free low alloy martensitic abrasion resistant steel.The three-body impact abrasive wear behavior was also analyzed.The results showed that two-step controlled rolling besides quenching at 880℃and tempering at 170℃could result in optimal mechanical property:the Brinell hardness,tensile strength,elongation and-40 ℃impact toughness were 531,1 530 MPa,11.8% and 58J,respectively.The microstructure was of fine lath martensite with little retained austenite.Three-body impact abrasive wear results showed that wear mechanism was mainly of plastic deformation fatigue when the impact energy was 2J, and the relative wear resistance was 1.04times higher than that of the same grade compared steel under the same working condition.The optimal hardness and toughness match was the main reason of higher wear resistance.  相似文献   

8.
 A great amount of iron grinding balls in tube mills have been consumed. Under this impact abrasive wear working condition, the failure of wear resistant alloying white irons grinding balls is mainly caused by fatigue spalling. The impact wear resistance of martensitic high chromium cast iron (Cr of 15%) is not high sometimes, but its cost is not low. Thus, medium Cr Si wear resistant cast iron is recommended. The influence of the iron on impact fatigue resistance and impact wear resistance is pronounced. Ball on ball impact fatigue test and high stress impact wear test of the grinding balls have been carried out. The results show that the impact fatigue resistance (IFR) and impact wear resistance (IWR) of medium Cr Si cast iron are superior to those of martensitic high chromium cast iron (Cr of 15%). The main reasons are that (1) the stress in medium Cr Si cast iron is released in the as cast state; (2) the matrix is fine pearlite with better toughness and plasticity; (3) the pearlite is more stable compared with a retained austenite under repeated impact load and less phase transformation can take place; (4) high silicon content improves the morphology of eutectic carbide; (5) there is no secondary carbide which results in less crack sources. All these factors are beneficial to improvement of impact fatigue spalling resistance. The eutectic carbide M7C3 is the main constituent to resist wear.  相似文献   

9.
Thermal wear of cast hot-forging die steel modified by rare earths(RE) was studied and compared with commercially used die steels. The function of RE and the mechanism of thermal wear of cast steel modified by RE were discussed. The results showed that with increasing content of RE, the wear rate of cast steel reduced at first and then increased. By adding 0.05% (mass fraction) RE, the cast hot-forging die steel with optimum thermal wear resistance was obtained, which was better than that of H13 and 3Cr2WSV. The large amount of coarse inclusions, (RE)2O2S, resulted from excessive RE, which obviously deteriorated thermal wear resistance. The mechanism of thermal wear of the modified cast die steel is oxidation wear and oxide fatigue delamination. The wear debris are lumps of Fe2O3 and Fe3O4.  相似文献   

10.
Microhardness and wear resistance of different rnicrostructures formed by TIG (tungsten inert gas) surface melting and chromium surface alloying (using ferrochromium) of ADI (austempered ductile iron) were studied. Surface melting resulted in the formation of a ledeburitic structure in the melted zone, and this structure has a hardness up to 896 HV as compared to 360 HV in that of ADI. Moreover, chromium surface alloying resulted in the formation of different structures including: (1) a hypereutectic structure consisting of primary (Fe,Cr)7C3 carbides and a eutectic matrix of transformed austenite (into martensite and retained austenite), as also (Fe,Cr)7C3 carbides, with a hardness of 1078 HV; (2) a hypoeutectic structure consisting of the same eutectic along with transformed primary austenite, with a hardness of 755 HV; and (3) a ledeburitic structure with an acicular morphology and a hardness of 896 HV. The results also indicated that surface melting reduced the wear rate of the ADI by approximately 37%. Also, chromium surface alloying yielded a superior wear behavior and reduced the wear rate of the treated specimens by about 38% and 70%, depending on the structures formed.  相似文献   

11.
By means of optical microscope, scanning electron microscope, X-ray diffraction, energy dispersive spectrometer, Rockwell and Vickers hardness tester, and wear tester, the microstructure and properties of Fe–10Cr–1B–4Al alloy quenched in different temperature has been studied. The results show that the microstructure of as-cast Fe–10Cr–1B–4Al are composed of pearlite, ferrite and the eutectic borocarbide which shows a network distribution along grain boundaries. The eutectic borocarbides are composed of M7(C, B)3, M2(B, C) and M23(C, B)6. As the quenching temperature increases, the network structure of eutectic borocarbide breaks, but the type of eutectic borocarbide has no obvious change, and the matrix structure changes gradually from ferrite to pearlite. As the quenching temperature increases, the macro-hardness and the matrix micro-hardness of Fe–10Cr–1B–4Al alloy increases gradually. The macro-hardness and matrix micro-hardness of alloy reach the highest value of 45.7 HRC and 388.1 HV, respectively when the quenching temperature is 1150 °C. The hardness of alloy decreases slightly when the quenching temperature is too high. While quenching at 1150 °C, the alloy has the highest wear resistance and good comprehensive properties.  相似文献   

12.
杨维宇  董瑞峰  高峰  李智丽 《钢铁》2015,50(2):76-80
 通过端淬试验、[Z]向硬度测试、显微组织和力学性能分析,研究了硼对60 mm厚Q690D钢淬透性和力学性能的影响。试验结果表明:微量固溶硼可显著提高60 mm厚Q690D钢的淬透性;和无硼的试验钢相比,含硼试验钢板厚1/4处的淬火组织由马/贝复相变成板条马氏体,淬火、回火态横截面上[Z]向最大硬度差分别由9、 5HRC降低到4、3HRC,提高了[Z]向硬度的均匀性,同时含硼试验钢淬火、回火态的强度和韧性得到提高。  相似文献   

13.
设计并制造了应用于水力喷射器的高铬铸铁喉管与喷嘴,金相检验表明,其铸态组织为细小均匀的圆形或六角形杆状(Cr,Fe)7C3型碳化物+奥氏体,淬火+回火后的组织为(Cr,Fe)7C3型碳化物+回火马氏体+少量残余奥氏体,H RC62~64。经装机试用,喷嘴使用寿命达20个月,比原用产品提高了13个月;喉管的使用寿命达10个月,比原用产品提高了5个月。  相似文献   

14.
15.
Martensitic stainless steel containing 12%-18%Cr have high hardness due to high carbon content. These steels are common utilized in quenching and tempering processes for knife and cutlery steel.The properties obtained in these materials are significantly influenced by matrix composition after heat treatment,especially as Cr and C content.Comprehensive considered the hardness and corrosion resistance,a new type martensitic stainless steel 6Cr15MoV has been developed.This study emphatic researches the effect of heat treatment processes on microstructure and mechanical properties of 6Cr15MoV martensitic stainless steel.Thermo-Calc software has been carried out to thermodynamic calculation;optical microscope(OM),scanning electronic microscope(SEM) and transmission electron microscope(TEM) have been carried out to microstructure observation;hardness and impact toughness test have been carried out to evaluate the mechanical properties.Results show that the equilibrium carbide in 6Cr15MoV steel is M23,C6 carbide,and finely distributed of M23C6 carbides can be observed on annealed microstructure of 6Cr15MoV stainless steel.6Cr15MoV martensitic stainless steel has a wider quenching temperature range,the hardness value of steel 6Cr15MoV can reach to 60.8 -61.6 HRC when quenched at 1060 - 1100℃.Finely distributed carbides will exist in quenched microstructure,and effectively inhabit the growth of austenite grain.With the increasing of quenching temperature,the volume fraction of undissolved carbides will decrease.The excellent comprehensive mechanical properties can be obtained by quenched at 1060-1100℃with tempered at 100-150℃,and it is mainly due to the high carbon martensite and fine grain size.At these temperature ranges,the hardness will retain about 59.2-61.6 HRC and the Charpy U-notch impact toughness will retain about 17.3-20 J.The morphology of impact fracture surface of tested steel is small dimples with a small amount of cleavage planes.The area of cleavage planes increases with the increasing of tempering temperature.  相似文献   

16.
The unlubricated sliding wear test of high chromium white cast irons (HCCIs) was conducted using a pin-on-disc configuration under different heat treatments and different hardnesses of the counterface. With the increase of counterface hardness (20?HRC–47?HRC–54?HRC), the mass loss of the sample first increases then decreases. When the counterface hardness is 20?HRC, adhesion wear mainly takes place between the high chromium cast iron and the surface of 1045 steel. When the hardness is 47 or 54?HRC, first HCCI’ matrix wear takes place, then carbide bump flakes under alternating stress. The mass loss of the counterface decreases with the increase of hardness for the same sample. The mass loss of quenching, once tempering and twice tempering sample decreases gradually for the same counterface hardness, but fluctuation of the samples’ surface increased. The disc material is always softer than the pin material and results in a severe wear regime operation.  相似文献   

17.
Effect of boron on the microstructure and impact toughness in the coarse-grained heat-affected zone(CGHAZ)of two high strength low alloy steels,boron-free and boron-containing,was investigated by means of weld thermal simulation test.The result shows that,for the boron-free steel,a microstructure consisting of grain boundary ferrite degenerates pearlite and granular bainite for longer t8/5(the cooling time from 800 to 500 ℃),while lath bainite for shorter t8/5.For the boron-containing steel,granular bainite is dominant for a wide range of t8/5.Continuous cooling transformation(CCT)study on the CGHAZ indicates that the transformation start temperature decreases by about 50-100℃under different t8/5,for the boron-containing steel compared with the boron-free steel.The presence of boron suppresses the nucleation of ferrite at prior austenite grain boundaries and hence enlarges the range of t8/5for granular bainite transformation.However,the addition of boron deteriorates the impact toughness of CGHAZ,which may be due to a markedly increased fraction of martensite-austenite(M-A)constituents and decreased fraction of high angle grain boundaries.  相似文献   

18.
 设计了5种高速钢轧辊材料,利用光学显微镜(OM)、扫描电镜(SEM)、X射线衍射(XRD)等分析手段,并通过硬度测试、冲击韧性试验和磨损试验,对含硼低合金高速钢轧辊材料在铸态、回火后的组织与性能及其耐磨性进行了系统研究。结果表明,含硼低合金高速钢轧辊材料铸态组织包括马氏体基体、残余奥氏体和不同种类的碳硼化合物,其铸态硬度大于HRC 64,碳硼化合物沿晶界呈网状分布。经RE-Mg-Ti复合变质处理后,晶界出现明显的颈缩和断网。对轧辊材料进行回火发现,随着回火温度的升高,轧辊硬度逐渐降低。相同条件下,未变质轧辊材料的韧性较变质轧辊材料韧性略低,加入过量的变质剂反而降低轧辊材料的韧性。磨损试验发现,经RE-Mg-Ti复合变质的含硼高速钢的耐磨性大于对比试样高碳高钒高速钢的耐磨性。  相似文献   

19.
The influence of dual-phase structure (ferrite + martensite) on the impact toughness and rate of abrasive wear for as-cast and normalized steel (0.29 C, 1.15 Mn, 0.9 Si and 0.95% Cr) is investigated. The increased grain refinement and the well arranged lamellar packets of martensite and ferrite obtained during intercritical quenching (from 810°C) of normalized and prequenched (from 880°C) steel created a satisfactory combination between toughness and abrasive wear resistance over those measured for intercritically quenched as-cast steel with or without prequenching.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号