首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
通过真空感应炉试验,研究不同Mg含量处理所获得的不同MgO-Al2O3-SiO2复合夹杂物对凝固组织的影响。试验结果表明,随着钢中Mg含量的增加,铸锭等轴晶率呈现先升高后下降的趋势,而等轴晶尺寸和柱状晶宽度呈现先降低后升高趋势,存在一个最佳的Mg的质量分数范围(5~13)×10-6,铸锭的等轴晶率在70%以上。夹杂物观测并结合热力学计算发现,随着钢中Mg含量的增加,MgO-Al2O3-SiO2复合夹杂物外层逐步析出MgO·Al2O3相;然而,Mg的质量分数高于13×10-6时,夹杂物外层开始析出2MgO·SiO2相。晶面错配度计算表明,MgO·Al2O3与δ-Fe的错配度为1.2%,2MgO·SiO2与δ-Fe的错配度为13%。可以判断,MgO·Al2O3相可促进等轴晶形成,抑制晶粒长大,2MgO·SiO2相则起不到促进形核作用。从而解释了铸锭等轴晶率、晶粒尺寸随Mg含量的变化规律。  相似文献   

2.
The characteristics of inclusions in high strength structural steel were characterized by scanning electron microscopy and energy dispersive spectroscopy. The influence of Ti- alloying and Ca treatment on the composition of inclusions in the steel was investigated, and the effect of oxides on the precipitation behavior of TiN and its refining effect on the microstructure were studied. The results show that the inclusions in the steels are Al- Ti- Mg- O system with spherical or polygonal shape after adding Ti, which furtherly can be effectively modified into spherical inclusions after adding Ca. The TiOx in inclusions can be reduced by Ca treatment and Ti gradually diffuses into the surface of the inclusions, which promotes the local precipitation of TiN on the surface of the composite oxides. The amounts of fine oxides and nitrides in steel increase with the increase of Ti mass percentage. Therefore, Ca treatment and higher Ti content can promote the formation of the inclusions of composite oxide and TiN, and also delay the homogeneous nucleation time of TiN inclusions, reducing its size during solidification process of the steel. TiN with the size about 2-3??m not only can induce polygonal ferrite, but also induce acicular ferrite. Specially, the inclusions with TiN and MnS locally precipitating on the surface of composite oxides are conducive to the nucleation of interlocking acicular ferrites.  相似文献   

3.
王启明  成国光 《工程科学学报》2021,43(11):1447-1458
围绕含Ti不锈钢冶金工艺的研究进展,从冶金物理化学基础、氧化物和TiN夹杂的形成与控制、凝固过程TiN复合核心和Ti元素对不锈钢铸件力学性能的影响等方面进行了总结和讨论。主要的研究进展为:含Ti不锈钢在冶炼过程生成的Al2O3、镁铝尖晶石、(MgO?Al2O3)rich?CaO?TiOx等高熔点氧化物夹杂是导致含钛不锈钢连铸水口堵塞的主要原因;优化的Al、Ca、Ti的添加方式和炉渣控制工艺是夹杂物减少和低熔点化的重要手段;TiN夹杂的析出、扩散长大和碰撞聚合的基本规律是关注的热点,钢液中大尺寸氧化物夹杂会促进TiN团簇的形成;通过严格控制凝固过程TiN或氧化物-TiN复合核心能够促进δ-Fe异质形核,提高连铸坯等轴晶率;固溶Ti元素能提高奥氏体或双相不锈钢中铁素体含量,提升不锈钢铸件的拉伸性能。   相似文献   

4.
采用金相显微镜、扫描电子显微镜和能谱面扫描等仪器设备研究了钛稳定化SUS436L超纯铁素体不锈钢板材的夹杂物类型,结合热力学计算分析各类夹杂物的生成机理。结果表明,SUS436L不锈钢的夹杂物主要包括纯TiN颗粒、TiN包裹MgO·Al_2O_3尖晶石的复合夹杂以及Al_2O_3-CaO-TiO_2复合氧化物;当w([N])为0.007 0%、钢液温度为1 600~1 650℃时,平衡钛质量分数为0.23%~0.38%;当钢液温度为1 600℃、w([Al])为0.02%时,w([Mg])大于0.000 8%时生成MgO·Al_2O_3,w([Mg])大于0.004 4%则生成MgO;当钢液温度为1 600℃、w([Al])为0.02%时,钙处理后w([Ca])为0.000 14%~0.000 36%、大于0.000 36%时分别生成低熔点的12CaO·7Al_2O_3及3CaO·Al_2O_3,且在钛合金化后易生成低熔点的Al_2O_3-CaO-TiO_2复合氧化物。  相似文献   

5.
试验研究了0.000 5%~0.001 2%Mg对60 kg真空感应炉熔炼的430铁素体不锈钢(/%:0.04C、0.25~0.32Si、0.28~0.38Mn、16.5~16.9Cr)夹杂物形成和凝固组织的影响。结果表明,430钢液中添加镁合金后,钢中形成平均粒径更小,数量密度更大的含MgO复合夹杂物;镁合金的加入可以改善430钢的凝固组织,且浇铸温度越低,改善效果越明显,在1 580℃浇铸时,等轴晶率由常规钢的30.8%提高至镁处理钢的88.5%,相应等轴晶尺寸由1 741.6μm降至945.3μm。含MgO夹杂物与δ相二维错配度极小,可作为430钢有效异质形核剂,促进等轴晶的形成,抑制柱状晶的生长,细化凝固组织。  相似文献   

6.
杨健  蔡文菁 《钢铁》2021,56(7):13-24
近年来镁处理的氧化物冶金技术研究非常活跃,为了总结镁处理氧化物冶金研究的最新成果,综述了镁处理对钢中夹杂物以及HAZ组织和性能的影响研究.通过镁处理形成的微米级含镁氧化物和硫化物复合夹杂物可以诱导晶内针状铁素体析出;镁处理过程中形成的纳米析出物,通过对奥氏体晶界的钉扎作用可以抑制原奥氏体晶粒长大,钉扎粒子多为300 n...  相似文献   

7.
高速重轨钢中尖晶石夹杂物的形成及控制   总被引:1,自引:0,他引:1  
储焰平  谌智勇  刘南  张立峰 《钢铁》2020,55(1):38-46
 高速重轨钢采用无铝脱氧工艺,但是钢中常发现大颗粒纯的MgO-Al2O3夹杂物,严重影响产品质量。为了明确高速重轨钢中尖晶石夹杂物的来源,进一步控制重轨钢中夹杂物,通过对重轨钢拉伸断口进行分析,结合水口结瘤物分析、热力学计算及典型夹杂物分析,系统研究了高速重轨钢中尖晶石夹杂物的形成机理。结果表明,重轨钢中的尖晶石夹杂物分为单独存在的尖晶石和钙铝酸盐包裹的尖晶石两类。其中钙铝酸盐包裹的尖晶石为CaO-SiO2-Al2O3-MgO复合夹杂物在降温冷却过程中析出,析出温度与夹杂物中Al2O3和MgO质量分数有关;单独存在的小尺寸尖晶石夹杂物为钢液凝固冷却过程中析出,与钢液成分有关。此外,研究还表明,水口结瘤也是重轨钢中出现大颗粒镁铝尖晶石夹杂物的重要原因之一。因此,严格控制合金辅料中Mg、Als等杂质元素质量分数,防止钢液发生二次氧化、降低耐火材料侵蚀等,尽可能降低夹杂物中的Al2O3和MgO质量分数,对控制重轨钢中尖晶石夹杂物,提高产品质量至关重要。  相似文献   

8.
The effect of nitrogen content on the formation of an equiaxed solidification structure of Fe-16Cr steel was investigated. Moreover, two different kinds of refractory materials, i.e., alumina and magnesia, were employed to control the type of oxide inclusion. The characteristics of TiN(-oxide) inclusions were quantitatively analyzed in both molten steel and solidified samples. When the melting was carried out in the alumina refractory, the grain size continuously decreased with increasing nitrogen content. However, a minimum grain size was observed at a specific nitrogen content (approx. 150 ppm) when the steel was melted in the magnesia refractory. Most of the single TiN particles had a cuboidal shape and fine irregularly shaped particles were located along the grain boundary due to the microsegregation of Ti at the grain boundary during solidification. The type of TiN-oxide hybrid inclusion was strongly affected by the refractory material where Al2O3-TiN and MgAl2O4-TiN hybrid-type inclusions were obtained in the alumina and magnesia refractory experiments, respectively. The formation of oxide inclusions was well predicted by thermochemical computations and it was commonly found that oxide particles were initially formed, followed by the nucleation and growth of TiN. When the nitrogen content increased, the number density of TiN linearly increased in the alumina refractory experiments. However, the number of TiN exhibits a maximum at about [N] = 150 ppm, at which a minimum grain size was obtained in the magnesia refractory experiments. Therefore, the larger the number density of TiN, the smaller the primary grain size after solidification. The number density of TiN in the steel melted in the magnesia refractory was greater than that in the steel melted in the alumina refractory at given Ti and N contents, which was due to the lower planar lattice disregistry of MgAl2O4-TiN interface rather than that of Al2O3-TiN interface. When ?TTiN (= difference between the TiN precipitation temperature and the liquidus of the steel) was 20 K to 40 K, the number density of effective TiN was maximized and thus, the grain size was minimized after solidification. Finally, although most of the TiN particles were smaller than 1 μm in the molten steel samples irrespective of the nitrogen content, TiN particles larger than 10 μm were observed in the solidified samples when the nitrogen content was greater than 150 ppm. The growth of TiN particles during melting and solidification was well predicted by the combinatorial simulation of the ‘Ostwald ripening model’ based on the Lifshitz–Slyozov–Wagner theory in conjunction with the ‘Diffusion controlled model’ using Ohnaka’s microsegregation equation.  相似文献   

9.
The formation and growth behavior of inclusions in the liquid steel were studied based on 45 steel by virtue of high temperature confocal laser scanning microscope.The structures of all kinds of complex inclusions formed in the process of cooling and solidification of liquid steel were analyzed,and disregistries between various inclusions were calculated.The results showed that inclusions with high melting point precipitated firstly,and inclusions with low disregistries precipitated later.The latter precipitated and grew up on the surface of the former,and finally clear layered complex inclusions formed.The low disregistry mechanism could not fully explain the forming reasons of all complex inclusions,but no matter which kind of mechanism leading to the formation of complex inclusions,its basic principle is that the first precipitated phase provides a low nuclear power interface for the latter,which can reduce the nucleation interface and strain energy barrier of the latter.  相似文献   

10.
Based on the minimum degree of disregistry mechanism in oxide metallurgy, laboratory and industrial research have been conducted on intragranular acicular ferrite (IAF) induced by microalloying elements in austenite. Based on the chemical compositions of DH36 steel and Mg, Al, Ti, V, Nb microalloyed steel, experimental results show that in ingots' organization, both V and Nb can induce IAF, but when the adding sequence was Al-Mg-Ti, smaller and dispersion inclusions were formed in austenite. When the Mg content was 0.005 wt%, the inclusion structure induced IAF in austenite is as follows: MgO and Al2O3 forms the core and TixOy adheres to the Al-Mg complex inclusions to produce smaller particle size and dispersions of Al, Mg, Ti complex inclusions. Finally, upon lowering the temperature, carbonitrides of Ti, V, and Nb were precipitated on the outermost layer of the inclusions. These carbonitrides with small disregistry contribute to induce intragranular acicular ferrite.  相似文献   

11.
研究了Mg脱氧对于船板结构钢中微米级夹杂物演变行为的影响.钢中典型夹杂物是中心为氧化物、外围为MnS的复合夹杂物.随着钢中Mg含量的增高,独立氧化物和独立硫化物的数量减少,氧化物和硫化物的复合夹杂物数量增多,同时夹杂物的尺寸减小、数量增加.随着钢中Mg含量从0升高到27 ×10^-4%、38×10^-4%、99 ×10^-4%,夹杂物中心氧化物成分的变化趋势是:Al2O3→(Mg-Al-Ti-O)→MgO.  相似文献   

12.
通过热力学计算与SEM-EDS检测对酒钢BOFLFRHCSP工艺Ti-IF钢夹杂物形核的热力学进行了研究。结果表明,在Ti-IF钢中夹杂物形核主要是非均匀形核,最易形成TiN,其次为CaO,然后为Al_2O_3。温度升高有利于Al_2O_3、CaO的形成;TiN的形成受温度影响较小。Ti-IF钢中w([Als])控制为0.027%~0.055%时,w([Mg])只需大于0.000 015%,就会有镁铝尖晶石MgO·Al_2O_3(MA)析出。Ti-IF钢中夹杂物演变主要有3种途径,分别为尖晶石与硅酸钙的复合夹杂Al_2O_3→MA→MgAlCaSi、低熔点的铝酸钙夹杂Al_2O_3→CaO·6Al_2O_3(CA_6)→CaO·2Al_2O_3(CA_2)→CaO·Al_2O_3(CA)→3CaO·Al_2O_3(C_3A)/12CaO·7Al_2O_3(C_(12)A_7)以及钛的复合物或钛的化合物Al_2O_3→TiOx→Al_2O_3·TiOx和Ti→TiN/Ti(C,N)。  相似文献   

13.
Y. L. Jin  S. L. Du 《钢铁冶炼》2018,45(3):224-229
This paper studied the precipitation behaviour and the control of TiN inclusions in rail steels by thermodynamic calculation and industrial experiments. The results showed that TiN inclusions could not precipitate in molten steel at present condition owing to low [Ti] and [N] content in rail steels; but when solid fraction exceeded 0.87 in mushy zone during solidification process, TiN inclusions could precipitate because of the separation–crystallisation of [Ti] and [N], and even long strip inclusions were formed around grain boundaries. Two types of TiN inclusions, including long strip type with size ranging 20–30?μm and block type with size below 10?μm, could be found in rail steels. The formation of TiN inclusions could be affected by the content of [Ti] and [N], the superheat of liquid steel, secondary cooling intensity and the intensity of strand electromagnetic stirring. The metallurgical process III was conducive to the control of TiN inclusions precipitated and grown up. The results of thermodynamic analysis were consistent with those of the metallurgical process tests.  相似文献   

14.
曾溢彬  包燕平  赵家七  王敏 《钢铁》2022,57(8):69-77
 某钢厂生产的55SiCr弹簧钢采用硅锰脱氧工艺,但在其冶炼过程中存在大量尖晶石类夹杂物,对最终产品的性能十分不利。尖晶石等硬、脆性夹杂物是弹簧在服役过程中疲劳断裂的主要因素之一,因此为明确弹簧钢中该类夹杂物的来源,进而控制并去除钢中非金属夹杂物,通过夹杂物自动分析、扫描电镜和能谱分析等手段,结合FactSage热力学计算分析了55SiCr弹簧钢冶炼过程夹杂物的演变及主要夹杂物的形成机理。分析结果表明,LF精炼后钢中夹杂物数量大幅上升,且其平均成分偏向SiO2-Al2O3-CaO三元相图中高熔点区域;夹杂物主要以SiO2·Al2O3·CaO·MgO为主,多表现为钙铝酸盐包裹或半包裹尖晶石的复合夹杂物类形态,此外还有少量单独的尖晶石夹杂物存在于钢中。对于上述夹杂物的形成及演变进行热力学计算,结果表明,钢液中Mg、Al含量上升将导致钢中析出大量尖晶石夹杂物,并与液态夹杂结合形成含镁复相夹杂物;同时,钢液成分的变化也会导致精炼过程生成的SiO2·Al2O3·CaO·MgO类夹杂物中MgO、Al2O3含量大幅增加,在复合夹杂物内部析出尖晶石相。因此,为减少硅锰脱氧弹簧钢中尖晶石类硬脆性夹杂物的生成,需要严格控制钢中Mg、Al含量,尽可能降低夹杂物中MgO、Al2O3含量,以实现对弹簧钢中非金属夹杂物的塑性化控制。  相似文献   

15.
In order to reveal the effect of Mg in low carbon microalloy steel, low carbon microalloy steel of HR60 wheel steel was smelted in vacuum induction furnace and industrial field respectively. The characteristics of typical non- metallic inclusions and microstructure of experimental steels were both compared by OM, SEM- EDS and INCA Feature with automatically scanning inclusions function. The mechanical properties of the experimental steels were also measured. The results show that alumina inclusions are modified to spinel inclusions with small size after Mg addition. Furthermore, acicular ferrite can be induced effectively by inclusions containing magnesium. The microstructures of experimental steels are changed from ??polygonal ferrite(PF) + pearlite(P)??to ??polygonal ferrite(PF) + degenerate pearlite(DP) + acicular ferrite(AF)?? and refined by Mg treatment. The strength of experimental steels is improved with Mg addition. In industrial experiments, the fatigue limit of Mg- treated steels is greater than 460MPa, while the fatigue limit of Ca- treated steels is about 450MPa. In addition, the fatigue life of Mg- treated steels is generally higher than that of Ca- treated steels under the condition that the stress is greater than the fatigue limit. In laboratory experiments, the contents of Nb and Ti are reduced while Mg content in steel is 18??10-6, the strength of the wheel steel is close to the reference steel. Therefore, the project to reducing production cost by taking advantage of the microalloy role of Mg is feasible.  相似文献   

16.
研究了模铸工艺生产的AISI 321不锈钢含钛夹杂物的演变。工业试验表明,LF喂钛线后,发生钛的氧化行为,随着冶炼过程的进行,Ti2O3在夹杂物平均成分中的比例逐渐升高,TiN主要以均质氮化钛和含芯氮化钛为主,含芯TiN核心成分为MgO及MgO·Al2O3,也有少量的TiOx-MgO-Al2O3核心。通过热力学软件Factsage计算了钢水中Ti-Al-O、Ti-N稳定相图以及凝固过程TiN的析出行为。  相似文献   

17.
High-melting-point inclusions such as spinel(Al2O3·xMgO) are known to promote clogging of the submerged entry nozzle (SEN) in a continuous caster mold. In particular, Ti-alloyed steels can have severe nozzle clogging problems, which are detrimental to the slab surface quality. In this work, the thermodynamic role of Ti in steels and the effect of Ca and Ti addition to the molten austenitic stainless steel deoxidized with Al on the formation of Al2O3·xMgO spinel inclusions were investigated. The sequence of Ca and Ti additions after Al deoxidation was also investigated. The inclusion chemistry and morphology according to the order of Ca and Ti are discussed from the standpoint of spinel formation. The thermodynamic interaction parameter of Mg with respect to the Ti alloying element was determined. The element of Ti in steels could contribute to enhancing the spinel formation, because Ti accelerates Mg dissolution from the MgO containing refractory walls or slags because of its high thermodynamic affinity for Mg ( e\textMg\textTi = - 0. 9 3 3). ( {e_{\text{Mg}}^{\text{Ti}} = - 0. 9 3 3}). Even though Ti also induces Ca dissolution from the CaO-containing refractory walls or slags because of its thermodynamic affinity for Ca ( e\textCa\textTi = - 0.119 ), \left( {e_{\text{Ca}}^{\text{Ti}} = - 0.119} \right), dissolved Ca plays a role in favoring the formation of calcium aluminate inclusions, which are more stable thermodynamically in an Al-deoxidized steel. The inclusion content of steel samples was analyzed to improve the understanding of fundamentals of Al2O3·xMgO spinel inclusion formation. The optimum processing conditions for Ca treatment and Ti addition in austenitic stainless steel melts to achieve the minimized spinel formation and the maximized Ti-alloying yield is discussed.  相似文献   

18.
19.
 High grade pipeline steels were prepared using vacuum carbon deoxidization process combined with a final Ti-deoxidation process. The microstructure of the as-cast steels was investigated by using Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). SEM observation shows the formation of Intragranular ferrite (IGF) structure was induced by fine inclusions. TEM selected area diffraction patterns (SAD) and elemental distribution analysis indicated that these inclusions are mainly Ti2O3 and MnS. It was also found that Ti2O3 may act as nucleus in the formation of MnS during solidification process. Raman spectroscopic analysis demonstrated the presence of another phase, MnTiO3, which could be formed through entrapment of Mn element by Ti2O3. It is believed that the formation of Mn-depleted region in the inclusions and thus the formation of MnTiO3 phase will lead to increased Mn pickup from matrix and promoted the formation of IGF during solidification of molten steel.  相似文献   

20.
论述了超纯铁素体不锈钢夹杂物控制的热力学,着重于脱氧、TiN析出、尖晶石夹杂物形成及钙处理的热力学研究。介绍了VOD炉内夹杂物行为的数学模拟研究,分析了超纯铁素体不锈钢中夹杂物引起的产品缺陷、夹杂物形成规律及特征,指出TiN或Ti(CN)容易在MgO、Al2O3-MgO、Ti2O3基体上析出,形成包裹型复合夹杂物。最后提出了今后开展超纯铁素体不锈钢夹杂物研究的几点建议。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号