首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
A computer model is developed to simulate the growth of grain-boundary allotriomorphs having more than one set of growth ledges at their interfaces. The growth is controlled by the volume diffusion of solute to or from the riser of a ledge. The time dependence of the growth rate of two orthogonal sets of ledges is found to be somewhat different from that of a single set of ledges. However, the operation of multiple sets of ledges is unlikely to alter significantly the growth kinetics of grain-boundary allotriomorphs from those predicted from the disordered growth theory, except at small ledge spacings or at short reaction times. Faster growth kinetics of proeutectoid α allotriomorphs than those of either planar or ellipsoidal disordered boundaries which have been reported in a Ti-6.6 at. pet Cr alloy are not likely to be accounted for with the heights and spacings of double sets of ledges actually observed on the interfaces of allotriomorphs. Hence, the grain-and interphase-boundary diffusion-assisted growth of precipitates, (rejector plate mechanism, RPM) appears to be operative during the growth of a allotriomorphs, as previously proposed on the basis of growth-rate measurements. This paper is based on a presentation made in the symposium “The Role of Ledges in Phase Transformations” presented as part of the 1989 Fall Meeting of TMS-MSD, October 1–5, 1989, in Indianapolis, IN, under the auspices of the Phase Transformations Committee of the Materials Science Division, ASM INTERNATIONAL.  相似文献   

2.
《Acta Metallurgica Materialia》1990,38(12):2721-2732
Three groups of previous investigators independently reported the anomalous result that the austenite habit plane of proeutectoid cementite plates, as determined with optical microscopy, is not unique. The present investigation utilized transmission electron microscopy (TEM) to study the interfacial structure and habit plane of proeutectoid cementite plates in a matrix of retained austenite in an Fe-0.81% C-12.3% Mn alloy in order to explain this unusual result. The broad faces of cementite plates were found to contain two types of structural feature: (1) large, kinked ledges with heights (h) of about 7 nm and spacings (λ) between 30 and 100 nm, and (2) a finely spaced set of straight ledges, with h ≈ nm or less and λ ≈ 4–6 nm, whose direction is nearly [110]A ||[010]C. Matching of atom spacings showed this to be a direction of good fit between the austenite and cementite lattices. The apparent habit plane, measured with conventional TEM techniques, was always less than 10° (and in most cases less than 5°) from (113)A ||(101)C. Atom matching studies also demonstrated that this pair of planes exhibits superior matching, and is thus likely to provide the conjugate atomic habit planes of the teraces of ledges. Thus, the non-uniqueness of the “optical microscopy apparent habit plane” of proeutectoid cementite plates appears to arise from the presence of arrays of ledges, combined with the sympathetic nucleation of new plates, on their broad faces.  相似文献   

3.
The effect of copper on proeutectoid cementite precipitation was investigated by examining the isothermal transformation characteristics of Fe-C and Fe-C-Cu alloys that had comparable carbon contents. The TTT diagrams generated for the Fe-1.43 wt pct C and the Fe-1.49 wt pct C-4.90 wt pct Cu alloys showed that the kinetics of proeutectoid cementite precipitation were not significantly affected by copper. The morphology of the proeutectoid cementite, as seen in the optical microscope, was also substantially the same in both alloys. However, transmission electron microscopy revealed the presence of small epsilon-copper precipitates within the proeutectoid cementite of the copper containing steel. It was concluded that this precipitation of ε-Cu took place at the cementite : austenite interphase boundaries, and that the transport of copper to the precipitates was accomplished by interphase boundary diffusion. The small influence of copper on the kinetics of proeutectoid cementite precipitation is discussed in terms of diffusional growth theories and the structure of the cementite : austenite interphase boundary.  相似文献   

4.
A previously developed computer model was modified to simulate the growth of grain boundary precipitates which grow by the ledge mechanism. The ledges were assumed to be nucleated in the grain boundary region at constant, parabolically decreasing, and random rates and to grow under the control of volume diffusion of solute to or from the riser of ledges. At lower under coolings at which the motion of individual ledges is slow, late-nucleated ledges soon catch up with first-nucleated ones, and precipitates tend to extend along the grain boundary: the overall precipitate shape is essentially that of a grain boundary allotriomorph. At larger undercoolings, first-nucleated ledges move fast to form a protuberance similar to Widmanstätten sideplates, while late-nucleated ones stay near the grain boundary region. The transition of precipitate shape from one to the other occurs in a very narrow range of supersaturation. The results are compared with various characteristics of the growth of proeutectoid ferrite allotriomorphs and sideplates in Fe-C alloys documented in the literature.  相似文献   

5.
《Acta Metallurgica》1987,35(5):1007-1017
The interphase boundary structure and interface processes at the pearlite-retained austenite growth interface in Fe-0.8 wt% C-12 wt% Mn alloy have been investigated by transmission electron microscopy. Facetting, misfit correcting dislocations, and ledge defects are all observed at the previously assumed disordered boundary. Hot stage electron microscopy revealed that the ledge defects are mobile, indicating the migration of the growth interface occurs by the lateral movement of steps. It is found that the growth ledges are continuous across the growth interfaces of the pearlitic ferrite and cementite. This provides a mechanism by which the interface processes of the two pearlite phases may be coupled.  相似文献   

6.
Thermionic electron emission microscopy was used to measure directly the thickening kinetics of proeutectoid ferrite sideplates in Fe-C alloys. These kinetics were found to be exceedingly irregular. During the first few seconds of growth, the thickening rate is 5 xl0-5±1 cm/s; afterwards it usually diminishes to 1 - 30 × 10-6 cm/s. As predicted by a general theory of precipitate morphology, thickening was shown to occur only by the ledge mechanism, despite the relatively poor matching of the austenite and the ferrite lattices. Ledges were observed to lengthen at rates controlled by the diffusion of carbon in austenite. Tent-shaped and other more complex surface relief effects, rather than the invariant plane strain relief, were found to predominate. These features are shown to be the expected result of a diffusional transformation occurring by means of a ledge mechanism.  相似文献   

7.
Interfacial steps and growth mechanism in ferrous pearlites   总被引:1,自引:0,他引:1  
The role of steps at the growth and interlamellar interfaces in ferrous pearlites is examined. The direction steps at the ferrite/cementite interlamellar interface (FCI) first characterized by Hackney and Shiflet (HS)1-5 are quantified by relating the degree of macroscopic curvature to step height and spacing using lattice imaging techniques. These interlamellar steps associated with alloy curvature are demonstrated to result directly from pearlite growth ledges. Interphase boundary carbide precipitation in an Fe-C-V alloy is employed to further demonstrate that the pearlite growth mechanism occurs through the migration of steps laterally across the growth front and that the reported mechanism is not specific to the high Mn-containing alloy. Analysis is based within the context of the dynamics of the phase transformation, with the argument made that the static interpretation of interphase boundary structure can be misleading. This paper is based on a presentation made in the symposium “The Role of Ledges in Phase Transformations” presented as part of the 1989 Fall Meeting of TMS-MSD, October 1–5, 1989, in Indianapolis, IN, under the auspices of the Phase Transformations Committee of the Materials Science Division, ASM INTERNATIONAL.  相似文献   

8.
A STEM analysis is made of the Mn distribution around grain boundary allotriomorphs of proeutectoid ferrite in an Fe-1.6 at. Pct C-2.8 at. Pct Mn alloy. Whereas the Mn enriched region is readily observed to extend along the austenite grain boundary, no substantial build-up or depletion of Mn near the ferrite : austenite interface is detected, consistent with the electron probe microanalysis previously reported. In the temperature range where the partition-local equilibrium (P-LE) mode has been proposed to prevail, measured parabolic growth rate constantsfall 1 to 2 orders of magnitude above that predicted from this model, but also below that calculated from the paraequilibrium (PE) model by roughly the same amount. A modification of the theory of grain boundary diffusion-aided growth of precipitates,i.e., the collector/rejector plate mechanism, on the other hand, accounts fairly well for the observed growth kinetics of ferrite allotriomorphs. However, only a slightly better accounting than the P-LE model is provided by this mechanism for the temperature dependence of Mn partition. Data on Ni partition, obtained in an Fe-0.5 at. Pct C-3.1 at. Pct Ni alloy, are also analyzed with the rejector plate model.  相似文献   

9.
On the growth kinetics of grain boundary ferrite allotriomorphs   总被引:1,自引:0,他引:1  
Previous work has shown that the thickening kinetics of proeutectoid ferrite allotriomorphs in an Fe-0.11 pct C alloy are often more rapid than the kinetics calculated for volume diffusion-control from the Dube-Zener equation for the migration of a planar boundary of infinite extent, assuming the diffusivity of carbon in austenite,D, to be constant at that of the carbon content of the Ae3. Recalculating the thickening kinetics, using a numerical analysis of the infinite planar boundary problem previously developed by Atkinson in which the variation ofD with composition is taken fully into account, was found to increase this discrepancy. Measurements were then made of the lengthening as well as the thickening kinetics of grain boundary allotriomorphs in the same alloy. Application to these data of Atkinson’s numerical analysis of the growth kinetics of an oblate ellipsoid, in which the composition-dependence ofD is similarly considered, produced an acceptable accounting for nearly all of the data. It was concluded that the growth of ferrite allotriomorphs is primarily controlled by the volume diffusion of carbon in austenite; the presence of a small proportion of dislocation facets along one of the broad faces of the allotriomorphs, however, usually results in growth kinetics which are somewhat slower. An alternate treatment of the lengthening and thickening data upon the basis of the theory of interfacial diffusion-aided growth of allotriomorphs indicated that, in the temperature range investigated (735° to 810°C),the diffusivities of carbon along γ:γ and γ:α boundaries required for this mechanism to make a significant contribution to growth are too high to be physically plausible. Formerly with Scientific Research Staff Formerly with Scientific Research Staff, Ford Motor Company  相似文献   

10.
The precipitation of copper has been detected and studied in three of the main decomposition products of austenite: allotriomorphic grain-boundary cementite, pearlitic cementite, and Widmanstätten cementite plates. The investigation has been carried out on two high-alloy hypereutectoid steels containing copper contents of 1.0 and 2.5 wt pct. The main advantage of these high-alloy steels is that the parent austenite phase remains stable upon cooling to room temperature, thus preserving the parent phase and the parent/product interfaces in the microstructure for subsequent examination. Transmission electron microscopy (TEM) revealed that the copper precipitation occurs in proeutectoid allotriomorphic grain-boundary cementite in association with the transformation interface. The copper particles were dispersed in the form of rows (or sheets) within the allotriomorphs of cementite. Evidence for copper precipitate particles nucleated at structural features imaged at the growth interface was also obtained. Copper precipitation was found to occur in both the ferrite and cementite lamellae of pearlite, and again, examination of partially decomposed structures revealed copper particles nucleated at the austenite/pearlite transformation interface. In addition, copper particles were also observed at the ferrite/cementite interface of pearlite. Copper precipitation observed in Widmanstätten cementite plates revealed a precipitate-free midrib region in the plates and a higher concentration of copper particles toward the broad faces of the plate. Copper particles were also found located at coarse linear interface defects at the broad faces of the plate.  相似文献   

11.
Thermionic electron emission microscopy was used to measure directly the thickening kinetics of proeutectoid ferrite sideplates in Fe-C alloys. These kinetics were found to be exceedingly irregular. During the first few seconds of growth, the thickening rate is 5 xl0-5±1 cm/s; afterwards it usually diminishes to 1 - 30 × 10-6 cm/s. As predicted by a general theory of precipitate morphology, thickening was shown to occur only by the ledge mechanism, despite the relatively poor matching of the austenite and the ferrite lattices. Ledges were observed to lengthen at rates controlled by the diffusion of carbon in austenite. Tent-shaped and other more complex surface relief effects, rather than the invariant plane strain relief, were found to predominate. These features are shown to be the expected result of a diffusional transformation occurring by means of a ledge mechanism. Formerly with the Scientific Research Staff Formerly with the Scientific Research Staff, Ford Motor Company  相似文献   

12.
Interphase boundary structures generated during diffusional transformations in Ti-base alloys, especially the proeutectoid α and eutectoid reactions in a β-phase matrix, are reviewed. Partially coherent boundaries are shown to be present whether the orientation relationship between precipitate and matrix phases is rational or irrational. Usually, these structures include both misfit dislocations and growth ledges. However, grain boundary α allotriomorphs (GBA’s) do not appear to develop misfit dislocations at partially coherent boundaries. Evidently, these dislocations can be replaced by ledges which provide a strain vector in the plane of the interphase boundary. The bainite reaction in Ti-X alloys produces a mixture of eutectoid α and eutectoid intermetallic compound. Both eutectoid phases are partially coherent with theβ matrix, and both grow by means of the ledge mechanism, though unlike pearlite the ledge systems of the two phases are structurally independent. Even after deformation and recrystallization, the boundaries between the eutectoid phases and theβ matrix, as well as between these phases, are partially coherent. Titanium and zirconium hydrides have partially coherent interphase boundaries with respect to theirβ matrix. The recent observation of ledgewise growth of γ TiH within situ high-resolution transmission electron microscopy (HRTEM) suggests that, repeated suggestions to the contrary, these hydrides do not grow by means of shear transport of Ti atoms at rates paced by hydrogen diffusion. This paper is based on a presentation made in the symposium “Interfaces and Surfaces of Titanium Materials” presented at the 1988 TMS/AIME fall meeting in Chicago, IL, September 25–29, 1988, under the auspices of the TMS Titanium Committee.  相似文献   

13.
An integrated overview is presented of a viewpoint on the present understanding of nucleation and growth mechanisms in both diffusional and shear (martensitic) transformations. Special emphasis is placed on the roles played by the anisotropy of interphase boundary structure and energy and also upon elastic shear strain energy in both types of transformation. Even though diffusional nucleation is based on random statistical fluctuations, use of the time reversal principle shows that interfacial energy anisotropy leads to accurately reproducible orientation relationships and hence to partially or fully coherent boundaries, even when nucleation at a grain boundary requires an irrational orientation relationship to obtain. Since the fully coherent boundary areas separating most linear misfit compensating defects are wholly immobile during diffusional growth because of the improbability of moving substitutional atoms even temporarily into interstitial sites under conditions normally encountered, partially and fully coherent interphase boundaries should be immovable without the intervention of growth ledges. These ledges, however, must be heavily kinked and usually irregular in both spacing and path if they, too, are not to be similarly trapped. On the other hand, the large shear strain energy usually associated with martensite requires that its formation be initiated through a process which avoids the activation barrier associated with nucleation, perhaps by the Olson-Cohen matrix dislocation rearrangement mechanism. During growth, certain ledges on martensite plates serve as transformation dislocations and perform the crystal structure change (Bain strain). However, the terraces between these ledges in martensite (unlike those present during diffusional growth) are also mobile during non-fcc/hcp transformations; glissile dislocations on these terraces perform the lattice invariant deformation. Growth ledges operative during both diffusional and shear growth probably migrate by means of kink mechanisms. However, diffusional kinks appear to be nonconservative and sessile (and therefore resist immediate transmission of elastic shear strain energy), whereas those associated with martensitic growth must be conservative and glissile (and fully transmit such strain energy). The broad faces of both diffusionally and martensitically formed plates contain an invariant line, as emphasized by Dahmen and Weatherly. However, in the diffusional case, minimization of growth ledge formation kinetics seems to be the main role thereby played, whereas in martensitic growth, the main purpose of such an interface is to minimize elastic shear strain energy. The latter minimization requires that martensite forms as plates (or perhaps as laths) enclosed by a pair of invariant line-containing interfaces. During diffusional transformations, on the other hand, other interfaces at which growth ledge formation kinetics are not too much faster than those at the invariant line interface can also comprise a significant portion of the interfacial area, thereby leading to the formation of other, quite different morphologies, such as intragranular idiomorphs and grain boundary allotriomorphs. Critical problems remaining unsolved in diffusional transformations include calculation of critical nucleus shapes when the crystal structures of the two phases are significantly different, highly accurate calculation of the energies of the interphase boundaries thus formed, and direct observation of atomic scale kinks on the risers of growth ledges by means of a yet-to-be-invented three-dimensional (3-D) atomic-resolution form of transmission electron microscopy. Experimental identification and characterization of transformation dislocations and experimental testing of “nucleation” mechanisms are now of special importance in fundamental studies of martensitic transformations.  相似文献   

14.
The nucleation kinetics of proeutectoid ferrite allotriomorphs at austenite grain boundaries in Fe-0.5 at. Pct C-3 at. Pct X alloys, where X is successively Mn, Ni, Co, and Si and in an Fe-0.8 at. Pct C-2.5 at. Pct Mo alloy have been measured using previously developed experimental techniques. The results were analyzed in terms of the influence of substitutional alloying elements upon the volume free energy change and upon the energies of austenite grain boundaries and nucleus: matrix boundaries. Classical nucleation theory was employed in conjunction with the pillbox model of the critical nucleus applied during the predecessor study of ferrite nucleation kinetics at grain boundaries in Fe-C alloys. The free energy change associated with nucleation was evaluated from both the Hillert-Staffanson and the Central Atoms Models of interstitial-substitutional solid solutions. The grain boundary concentrations of X determined with a Scanning Auger Microprobe were utilized to calculate the reduction in the austenite grain boundary energy produced by the segregation of alloying elements. Analysis of these data in terms of nucleation theory indicates that much of the influence of X upon ferrite nucleation rate derives from effects upon the volume-free energy change,i.e., upon alterations in the path of theγ/(α + γ) phase boundary. Additional effects arise from reductions in austenite grain boundary energy, with austenite-forming alloying elements being more effective in this regard than ferrite-formers. By difference, the remaining influence of the alloy elements studied evidently results from their ability to diminish the energies of the austenite: ferrite boundaries enclosing the critical nucleus. The role of nucleation kinetics in the formation of a bay in the TTT diagram of Fe-C-Mo alloys is also considered. Formerly Graduate Student, Department of Metallurgical Engineering and Materials Science, Carnegie-Mellon University  相似文献   

15.
Carbide precipitation during the eutectoid decomposition of austenite has been studied in an Fe-0.12 pct C-3.28 pct Ni alloy by transmission electron microscopy (TEM) supplemented by optical microscopy. Nodular bainite which forms during the latter stages of austenite decomposition at 550 °C exhibits two types of carbide arrangement: (a) banded interphase boundary carbides with particle diameters of about 20 to 90 nm and mean band spacings between 180 and 390 nm and (b) more randomly distributed (“nonbanded”) elongated particles exhibiting a wide range of lengths between 33 and 2500 nm, thicknesses of approximately 11 to 50 nm, and mean intercarbide spacings of approximately 140 to 275 nm. Electron diffraction analysis indicated that in both cases, the carbides are cementite, obeying the Pitsch orientation relationship with respect to the bainitic ferrite. The intercarbide spacings of both morphologies are significantly larger than those previously reported for similar microstructures in steels containing alloy carbides other than cementite (e.g., VC, TiC). Both curved and straight cementite bands were observed; in the latter case, the average plane of the interphase boundary precipitate sheets was near {110}α//{011}c consistent with cementite precipitation on low-energy {110}α//{111}γ ledge terrace planes (where α,β, andc refer to ferrite, austenite, and cementite, respectively). The results also suggest that the first stage in the formation of the nonbanded form of nodular bainite is often the precipitation of cementite rods, or laths, in austenite at the α:γ interfaces of proeutectoid ferrite secondary sideplates formed earlier. Although these cementite rods frequently resemble the “fibrous” microstructures observed by previous investigators in carbide-forming alloy steels, they are typically much shorter than fibrous alloy carbides. The bainitic microstructures observed here are analyzed in terms of a previously developed model centered about the roles of the relative nucleation and growth rates of the product phases in controlling the evolution of eutectoid microstructures.  相似文献   

16.
Growth kinetics of grain boundary ferrite allotriomorphs in Fe−C alloys   总被引:1,自引:0,他引:1  
The kinetics of lengthening and thickening of grain boundary allotriomorphs of proeutectoid ferrite were measured at several temperatures in high purity Fe−C alloys containing 0.11 pct, 0.23 pct and 0.42 pct C. These measurements were conducted by measuring the length of the longest and the width of the widest allotriomorph in each specimen. All specimens were austenitized so as to make the grain boundaries perpendicular to the plane of polish. This measurement technique appreciably reduced the scatter in the parabolic rate constant data previously encountered in thermionic emission microscopy measurements. Parabolic rate constants for lengthening and thickening were calculated, using the experimental aspect ratio, by means of the Atkinson analysis for oblate ellipsoids. The ratio of the measured to the calculated constants was in all cases less than unity. The previously made suggestion that these slow growth kinetics are due to faceting was supported through the observation of facets on allotriomorphs by means of scanning and transmission electron microscopy. The aspect ratio of ferrite allotriomorphs was shown to beca 1/3, independent of reaction time temperature and carbon content. The dihedral angle of the allotriomorphs was found to be 100±5 deg, as compared with a published angle for recrystallized and equilibrated specimens ofca 115 deg. Several possible explanations for the aspect ratio and dihedral angle findings are considered. M. RIGSBEE, formerly Postdoctoral Research Associate with Michigan Technological University  相似文献   

17.
The nucleation, growth, and overall transformation kinetics of grain boundary α allotriomorphs were measured in Ti-3.2 at. pct Co and Ti-6.6 at. pct Cr alloys with optical microscopy. Nucleation kinetics were interpreted with classical heterogeneous nucleation theory, using the pillbox model of the critical nucleus. Growth kinetics of allotriomorphs were significantly accelerated by the rejector plate mechanism, but much less so than allotriomorphs formed in fcc substitutional matrices at comparable homologous temperatures. Overall transformation kinetics were accounted for with a modified version of Cahn’s theory of grain boundary nucleated reactions. Formerly Graduate Student, Department of Metallurgical Engineering and Materials Science, Carnegie Mellon University, Pittsburgh, PA 15213  相似文献   

18.
The three-dimensional (3-D) shapes and distributions of grain-boundary-nucleated proeutectoid ferrite precipitates have been obtained by computer-aided 3-D reconstruction of serial sections of an Fe-0.12 wt pct C-3.28 wt pct Ni alloy. Isothermal transformation for short times at 650 °C was used to produce a low volume fraction of ferrite, which appeared as both Widmanstätten shapes and more-equiaxed grain-boundary precipitates. While the two-dimensional (2-D) cross sections of these precipitates appeared to fit into the previously accepted categories of precipitate morphologies, 3-D reconstructions revealed important aspects of connectivity and shape that were not observed earlier. A partially revised morphological classification based on these 3-D observations is provided here. Significant differences between the 3-D morphology of proeutectoid ferrite and that of proeutectoid cementite are also discussed, indicating (among other things) that the 3-D morphological classifications of ferrite are generally more complex than those of proeutectoid cementite.  相似文献   

19.
Elastic interactions among ledges on transformation interfaces have noticeable consequences when chemical and interfacial tension (capillary) forces are small, namely, near equilibrium. This occurs just at nucleation (unstable equilibrium) or during the slow coarsening regime. When the interface lies perpendicular to the misfit strain (as do the large faces of misfits in Al-Cu alloys), ledges of like sign repel one another, and nucleation of new ledges occurs as far as possible from existing ones. However, when the interface lies parallel to the misfit strain, ledges of like sign attract one another. We then expect the formation of superledges. Essentially, such an interface with ledges is elastically unstable. Expressions are derived for the kinetics of ledge amaleamation. This paper is based on a presentation made in the symposium “The Role of Ledges in Phase Transformations” presented as part of the 1989 Fall Meeting of TMS-MSD, October 1–5, 1989, in Indianapolis, IN, under the auspices of the Phase Transformation Committee of the Materials Science Division, ASM INTERNATIONAL.  相似文献   

20.
Austenitizing an Fe-0.23 pct C alloy at 1300°C and further at 900°C prior to isothermal transformation was found to increase the growth kinetics of grain boundary ferrite allotriomorphs while decreasing their rate of nucleation. A scanning Auger microprobe was used to establish that sulfur segregates to the austenite grain boundaries and does so increasingly with decreasing austenitizing temperature. A binding free energy of sulfur to these boundaries of approximately 13 kcal/mole (54.4 kj/mole) was calculated from theMcLean adsorption isotherm. The kinetic results were explained in terms of preferential reduction of the austenite grain boundary energy decreasig nucleation kinetics, and adsorption of sulfur at α:γ boundaries increasing the carbon concentration gradient in austenite driving growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号