首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
为改善蒸养对混凝土性能的不利影响,采用蒸养后补充养护的方式提高混凝土28 d龄期抗压强度和耐水性.蒸养后再水中养护或室外湿织物覆盖12~48 h,混凝土28 d抗压强度和软化系数先增加后降低.蒸养后再标准养护时,混凝土28 d抗压强度和软化系数随标养时间增加而增加.蒸养后再薄膜覆盖的混凝土28 d抗压强度和软化系数也随覆盖时间增加而增加.采用蒸养后补充养护的混凝土28 d抗压强度和软化系数均优于蒸养后直接进入室外自然养护的混凝土.其中,薄膜覆盖是对蒸养混凝土较优的一种补充养护方式.  相似文献   

2.
李淑青  申海洋 《硅酸盐通报》2018,37(11):3717-3720
为研究钢渣掺量对钢渣砂浆强度特性的影响及钢渣砂浆压敏性在循环荷载下的变化规律,对不同钢渣掺量、不同龄期的钢渣砂浆进行无侧限抗压强度测试,分析了循环荷载下抗压强度范围内电阻率变化率随应力变化的规律.结果表明:钢渣砂浆无侧限抗压强度随钢渣掺量的增加而降低,随龄期的增加而增加;此外,在电阻率测试及压敏性分析时,由于电阻率受电流频率影响较大,建议选用50 kHz作为取值频率;当应力变化在无侧限抗压强度范围内时,电阻率变化率幅度随养护龄期的增加逐渐减小,其变化率可由养护7 d时的-4.83%降至28 d时-3.16%,同时变化幅度随钢渣掺量的增加逐渐增大.  相似文献   

3.
谢超  王起才  于本田  惠兵 《硅酸盐通报》2015,34(9):2496-2500
为研究不同养护条件下同强度混凝土抗氯离子渗透性和细观孔结构的差异,采用气孔分析法和直流电量法对-3℃养护条件下养护56 d和标准养护条件下养护28 d的抗压强度基本一致的混凝土的细观孔结构和电通量进行了测试.试验结果表明:两者抗压强度基本相同,孔隙率也基本相同,但-3℃负温养护条件下养护56 d混凝土的气孔间距系数和平均气孔直径明显大于标准养护条件下养护28 d的同种混凝土,粗大孔明显增多;-3℃负温养护条件下养护56 d的混凝土电通量值也明显大于标准养护条件下养护28 d的混凝土.在-3℃养护条件下,混凝土中部分液相水很快转化成冰,一方面降低了水泥的水化速率,另一方面,因水结成冰产生膨胀内应力,使内部孔结构劣化严重,故出现上述现象.因此,强度不能作为衡量混凝土性能优劣的唯一指标,强度相同而养护温度不同时,其抗氯离子渗性和细观孔结构也不同.  相似文献   

4.
采用细磨钢渣粉、砂状钢渣、石状钢渣分别等量替代混凝土中的水泥、细集料、粗集料配制钢渣混凝土,研究其对混凝土7d、28d抗压强度的影响,并分析了其影响机理。试验结果表明:水灰比为0.30时,细磨钢渣粉对混凝土7d抗压强度表现出明显的减弱效应,而砂状钢渣、石状钢渣则有利于混凝土7d抗压强度的发展。另外,细磨钢渣粉、砂状钢渣、石状钢渣在混凝土中存在最优掺量分别为10%、30%、30%。  相似文献   

5.
本试验主要研究负温(-3℃)和低温(3℃)不同养护条件下,引气混凝土在7 d、14 d、28 d、56 d、84 d和112 d不同龄期内强度增长规律及引气混凝土在28 d、56 d、84 d和112 d不同龄期内渗透性能变化规律。通过与标准养护条件下相应龄期引气混凝土抗压强度及渗透性能对比,得出了不同养护条件下引气混凝土随龄期增长强度损失率及渗透性能增长率。结果证明,试验龄期内引气混凝土强度损失率范围负温和低温下分别是22.40%~41.00%、7.97%~18.26%;渗透性能增长率范围,负温下约为76.52%~114.35%,低温下则在12.34%~47.86%之间波动。同时对该引气混凝土渗透性及强度实验数据进行回归分析,得到不同养护条件下线性相关系数。数据显示,负温(-3℃)养护条件下引气混凝土线性相关系数小于低温(3℃)养护条件下引气混凝土线性相关系数,说明养护温度影响混凝土渗透性与强度的线性相关性。通过掌握渗透性与强度的辩证关系,可为冬季防水工程施工中耐久混凝土配合比设计提供理论支持及参考依据。  相似文献   

6.
王强  曹丰泽  于超  王卫仑 《硅酸盐通报》2015,34(4):1004-1010
通过测定钢渣骨料混凝土的坍落度以及在标准养护条件和高温养护条件下掺有钢渣骨料的普通混凝土与高强混凝土的抗压强度、劈裂抗拉强度、氯离子渗透性能,探讨了钢渣骨料对混凝±性能的影响.结果表明:钢渣细骨料会使新拌混凝土的流动性能变差;在标准养护条件下,钢渣粗骨料会使高强混凝土的抗压强度下降,对普通混凝土的抗压强度、劈裂抗拉强度以及高强混凝土的劈裂抗拉强度影响很小;在高温养护条件下,钢渣骨料能够提高普通混凝土的抗压强度、劈裂抗拉强度以及高强混凝土的劈裂抗拉强度,但对高强混凝土的抗压强度影响不大;在标准养护条件和高温养护条件下,钢渣骨料对普通混凝土和高强混凝土的氯离子渗透性影响均很小.  相似文献   

7.
张天义 《水泥》2012,(11):45-45
采用固体废弃物钢渣作为原材料制备免蒸压加气混凝土不仅可以大规模资源化利用钢渣,而且可以降低加气混凝土生产过程中的碳排放。本文采用钢渣、水泥、石膏等为原材料,通过预养护加二氧化碳养护的方式,研究了免蒸压钢渣加气混凝土的制备方法,重点关注了钢渣比表面积、水固比、减水剂及预养护时间对加气混凝土性能的影响。结果表明,钢渣加气混凝土在二氧化碳矿化养护后其抗压强度显著提高。钢渣比表面积、水固比及减水剂掺量对钢渣加气混凝土的抗压强度具有较大影响。此外,在合适配比及养护制度下,容重700 kg/m3左右的免蒸压钢渣加气混凝土的抗压强度可以达到5.5 MPa以上。  相似文献   

8.
将钢渣、矿渣微粉与废弃混凝土碎料混拌制备钢渣-杂填土基层,并对其性能开展研究。体积安定性试验表明,矿渣微粉具有明显抑胀作用,掺入50%(质量分数,下同)钢渣、50%杂填土以及外掺钢渣质量30%矿渣微粉的试件的10 d高温水浴膨胀率仅为1.32%,而未掺矿渣微粉的试件3~5 d膨胀率均超过2%限值。7 d无侧限抗压强度和28 d劈裂强度正交试验表明:7 d无侧限抗压强度、28 d劈裂强度影响因素大小顺序为钢渣、水泥掺量、混凝土碎料占比、土壤固化剂;各组试件中7 d无侧限抗压强度、28 d劈裂强度最大值分别为12.41 MPa、2.24 MPa;钢渣-杂填土基层最佳配比为50%钢渣、50%杂填土(m(混凝土碎料)∶m(素土)=6∶4),外掺钢渣质量40%的矿渣微粉、5%水泥、0.018%固化剂,此时试件具有良好的水稳定性。强度影响因素试验表明,矿渣微粉对试件强度的增幅影响最大。X射线衍射及扫描电子显微镜分析表明,在矿渣微粉和土壤固化剂的作用下,钢渣中f-CaO被有效消解,团聚体与混凝土碎料、钢渣颗粒的密实包裹阻止了内部水分的挥发和外部自由水的侵入,既保证了钢渣-杂填土基层的强度,又有效抑制了膨胀。  相似文献   

9.
张宾  汪超  李越颖  林永权  陶从喜 《水泥》2022,(11):45-49
采用固体废弃物钢渣作为原材料制备免蒸压加气混凝土不仅可以大规模资源化利用钢渣,而且可以降低加气混凝土生产过程中的碳排放。本文采用钢渣、水泥、石膏等为原材料,通过预养护加二氧化碳养护的方式,研究了免蒸压钢渣加气混凝土的制备方法,重点关注了钢渣比表面积、水固比、减水剂及预养护时间对加气混凝土性能的影响。结果表明,钢渣加气混凝土在二氧化碳矿化养护后其抗压强度显著提高。钢渣比表面积、水固比及减水剂掺量对钢渣加气混凝土的抗压强度具有较大影响。此外,在合适配比及养护制度下,容重700 kg/m3左右的免蒸压钢渣加气混凝土的抗压强度可以达到5.5 MPa以上。  相似文献   

10.
通过对比蒸养15 h后不同养护时间的水中养护、标准养护和自然状态喷淋养护下混凝土的抗压强度和弹性模量,研究夏季后续养护制度对高强混凝土后期性能的影响.结果表明:混凝土蒸养15 h,后续采用水养条件养护对其抗压强度和弹性模量的增长最为有利;水养条件下混凝土水化程度最高,水化产物结构也最为致密;混凝土水养3d后自然喷淋至28d强度与弹性模量均满足轨道板混凝土的放张要求,因此混凝土构件蒸养后水养3d再自然喷淋至28 d对生产最有利.  相似文献   

11.
利用粉磨至不同比表面积的转炉钢渣微细粉取代部分水泥进行了C60混凝土的早期和后期强度及坍落度试验,考察了钢渣微细粉的比表面积及掺入量、水胶比和减水剂掺入量对混凝土性能的影响,并用PoreMaster——60孔测定仪测定了硬化混凝土的孔分布。试验结果表明,钢渣微细粉的比表面积为487m^2/kg、掺入量为15%-20%时,可获得令人满意的混凝土3d和28d抗压强度;随着水胶比的增大,混凝土3d和28d抗压强度显著降低,坍落度急剧增大;减水剂掺入量对混凝土坍落度影响明显,但对混凝土强度影响不大。  相似文献   

12.
基于钢渣的活性效应和微集料效应研究了不同掺量钢渣对混凝土抗压强度和抗折强度的影响,通过加速碳化试验和抗冻性试验探究了钢渣混凝土的抗碳化性能和抗冻性.采用X-CT技术探究了钢渣混凝土内部的孔结构.结果表明:掺加10%钢渣混凝土的抗压强度和抗折强度最大,掺加30%钢渣混凝土的抗压强度和抗折强度最小.当碳化到56 d时,掺加30%钢渣的混凝土的碳化深度已达12.5 mm;冻融循环到180 d,掺加30%钢渣混凝土的相对动弹性模量降至88.7%.  相似文献   

13.
掺钢渣-矿渣-粉煤灰复合微粉混凝土性能研究   总被引:7,自引:1,他引:6  
研究了由钢渣-矿渣-粉煤灰制备的复合微粉对混凝土强度、收缩性能和氯离子渗透性能的影响。结果表明:在同水胶比下,复合微粉等量取代水泥后,混凝土7d强度低于普通混凝土的强度,当复合微粉掺量小于45%时,其28d及以后强度高于普通混凝土。在同水胶比下,复合微粉等量取代水泥后,可有效降低混凝土的干燥收缩,且混凝土的抗氯离子渗透性能显著提高。  相似文献   

14.
采用玻璃粉部分替代矿渣制备碱激发胶凝材料,研究了玻璃粉含量(10%、20%、30%、40%,质量分数)对碱激发矿渣-玻璃粉基(AASG)泡沫混凝土性能的影响。对AASG泡沫混凝土流动性、抗压强度、干燥收缩、吸水率、软化系数和抗冻性进行了研究,并通过扫描电子显微镜和X射线衍射仪对机理进行了分析。结果表明:10%~40%掺量的玻璃粉使AASG泡沫混凝土的流动性提高了5.0%~25.6%;抗压强度随玻璃粉掺量的增加先增大再减小,玻璃粉掺量为20%时,7 d和28 d抗压强度最高,与对照组相比分别提高15.0%和23.8%;玻璃粉掺量为20%时,AASG泡沫混凝土的干燥收缩、吸水率、软化系数和抗冻性最佳;SEM分析发现,玻璃粉有助于孔结构的优化和提高微观结构的致密性;XRD分析表明,AASG泡沫混凝土的主要反应产物为 C-(N-)A-S-H和水滑石。将玻璃粉作为矿渣的替代品来制备AASG泡沫混凝土是可行的,为其在回填工程和固废利用提供理论支撑。  相似文献   

15.
通过立方体抗压强度试验研究了活性粉末混凝土的受压破坏过程,并通过单因素对比试验研究了水胶比、石英粉、粉煤灰、纤维掺量和养护条件对活性粉末混凝土抗压强度的不同影响,并对低水胶下获得超高强度的原理进行深入分析;配制出了7d龄期常温养护条件下达105MPa和高温蒸汽养护条件下达193MPa的活性粉末混凝土.  相似文献   

16.
采用钢渣微粉和粉煤灰为主要原材料制备地质聚合物,以抗压强度为指标优化制备条件,探讨影响地质聚合物强度的因素,利用SEM、XRD和TG-DSC等手段对产物的微观形貌、物相组成和热稳定性进行分析表征。研究表明,地质聚合物的抗压强度随着钢渣微粉掺量和激发剂掺量增加先增加后减小,随温度增加而增加,其中养护温度影响最显著,水玻璃模数影响最小。最佳工艺条件为:水玻璃模数1.0、激发剂掺量20%(质量分数)、钢渣微粉掺量20%(质量分数)、液固比0.3、养护温度60 ℃。其3 d和7 d抗压强度高达40.11 MPa和43.03 MPa,固化Pb2+后对其强度影响较小,固化率在99.99%以上。地质聚合物表面致密度高,无明显裂纹,未观察到明显的钢渣颗粒轮廓,晶相结构主要为石英和莫来石,热稳定好。  相似文献   

17.
钢渣微细粉在砼中的应用研究   总被引:3,自引:1,他引:3  
利用粉磨至不同比表面积的转炉钢渣微细粉取代部分水泥进行了C40砼的3 d和28 d抗压强度及坍落度试验,考察了钢渣微细粉比表面积及掺入量、水胶比和减水剂掺入量对砼性能的影响,并用PoreMaster-60孔测定仪测定了硬化砼的孔分布。试验结果表明,钢渣微细粉比表面积为450 m2/kg、掺入量为15%~20%时,可获得令人满意的砼3 d和28 d抗压强度;随着水胶比的增大,砼3 d和28 d抗压强度显著降低,坍落度明显增大;减水剂掺入量对砼坍落度影响显著,但对砼强度影响不大。  相似文献   

18.
袁璞  朱益胜 《硅酸盐通报》2022,41(7):2292-2298
采用煤矸石陶粒与矿渣制备碱矿渣陶粒混凝土,可实现煤矸石和矿渣等固废的再利用。为研究龄期与陶粒掺量对碱矿渣陶粒混凝土抗压强度及能量特性的影响,对不同龄期(1 d、3 d、7 d、14 d、28 d)与不同陶粒体积掺量(0%、25%、50%、75%、100%)的碱矿渣陶粒混凝土进行单轴压缩试验。结果表明,不同龄期与陶粒掺量下混凝土应力-应变曲线均经历了压密阶段、弹性变形阶段、裂缝开展阶段、破坏阶段,煤矸石陶粒的掺入使呈混凝土呈现一定的延性特征。抗压强度、弹性模量与龄期呈良好的正相关指数函数关系,与陶粒掺量呈良好的负相关二次函数关系。随龄期的延长,总能量和弹性能不断升高,耗散能先降低后升高;随陶粒掺量的增大,总能量和弹性能逐渐降低,耗散能先升高后降低。  相似文献   

19.
用不锈钢渣、水泥、粉煤灰、发泡剂与水制备不锈钢渣泡沫混凝土,测试了不锈钢渣及泡沫混凝土的化学成分、微观形貌、矿物组成、结构、游离CaO含量、易磨性、内辐射指数与外辐射指数、活性指数、主要性能指标(抗压强度、干密度和导热系数)和浸出液中重金属浓度,研究了不锈钢渣用于制备泡沫混凝土的可行性与环境风险。结果表明,不锈钢渣的主要矿物组成为Ca2SiO4及含Al和Ti, Cu, Pb, Ta等重金属的矿相,具有一定胶凝活性且易磨,内辐射指数与外辐射指数满足建筑材料放射性元素限量要求。不锈钢渣掺量为25wt%?42wt%时,泡沫混凝土的干密度为597?621 g/cm3,养护28 d后抗压强度为1.83?2.98 MPa、导热系数为0.11?0.12 W/(m?K),满足泡沫混凝土要求。不锈钢渣所含重金属主要以稳定的金属固熔体存在,浸出浓度远低于危险废物限值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号