首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bilayered ferroelectric thin films consisting of Pb(Zr0.52Ti0.48)O3 (PZT) and (Bi3.15Nd0.85)Ti3O12 (BNT) have been successfully synthesized on Pt/Ti/SiO2/Si substrates, via a combined sol–gel and rf-sputtering route. Their ferroelectric and dielectric properties are critically dependent on the phases present, film texture and in particular layer and film thicknesses. Due to the coupling of PZT and BNT bilayers, there requires an optimized thickness combination of the two ferroelectric layers, in order to give rise to the wanted ferroelectric and dielectric properties, while the phenomenon can not be accounted for by the simple series connection model.  相似文献   

2.
Abstract

Growth of Pb(Zr0.53Ti0.47)O3 (PZT) thin films on RuO2 electrodes by the sol-gel process is usually accompanied by the formation of second phases. The resulting RuO2/PZT/RuO2 capacitors are fatigue-free up to nearly 1011 switching cycles, but they have high leakage currents (J~10?3 A/cm2 at 1 volt) and large property variation. We have developed several modifications of the RuO2 bottom electrode which enhance nucleation of the perovskite phase, eliminate or reduce the second phases, and control film orientation and properties. The PZT films deposited on the modified RuO2 electrodes have leakage current densities which are two to four orders of magnitude lower than those of PZT films deposited on the unmodified RuO2 electrodes. In most cases, the excellent resistance to polarization fatigue which is characteristic of the RuO2/PZT/RuO2 capacitors, is maintained.  相似文献   

3.
Epitaxial (Bi,La)4Ti3O12 (BLT) thin films, epitaxial Pb(Zr,Ti)O3 (PZT) thin films, and epitaxial multilayered BLT/PZT ferroelectric thin films with different orientations were prepared on SrTiO3 (STO) single crystal substrates by pulsed laser deposition. From X-ray pole-figures and electron diffraction patterns, the epitaxial orientation relationships between BLT layers, PZT layers, and STO substrates were identified to be (1) BLT(001)//PZT(001)//STO(001), and BLT[110]//PZT[100]//STO[100] for the multilayered thin films on (001)-oriented STO substrates, and (2) BLT(118)//PZT(011)//STO(011), and $ {\text{BLT}}{\left[ {\overline{1} \overline{1} 0} \right]}//{\text{PZT}}{\left[ {100} \right]}//{\text{SrTiO}}_{3} {\left[ {100} \right]} $ for the multilayered films on (011)-oriented STO substrates. Tri-layered films of the same compositions showed well-defined hysteresis loops as well as a high fatigue resistance up to 1?×?1010 switching cycles.  相似文献   

4.
Ba(Zr0.05Ti0.95)O3 (BZT) thin film (∼330 nm) was grown on Pt/Ti/SiO2/Si(100) substrate by a simple sol-gel process. The microstructure and the surface morphology of BZT thin film were studied by X-ray diffraction and atomic force microscopy. The optical properties of BZT thin film were obtained by spectroscopic ellipsometry. The optical bandgap was found to be 3.74 eV of direct-transition type. Ferroelectric and dielectric properties of BZT thin film were also discussed. The electrical measurements were conducted on BZT films in metal-ferroelectric-metal (MFM) capacitor configuration. The results showed the film exhibited good ferroelectrity with remanent polarization and coercive electric field of 3.54 μC/cm2 and 95.5 kV/cm, respectively. At 10 kHz, the dielectric constant and dielectric loss of the film are 201 and 0.029, respectively.  相似文献   

5.
Heterolayered Pb(Zr1 − x Ti x )O3 thin films consisting of alternating PbZr0.7Ti0.3O3 and PbZr0.3Ti0.7O3 layers were successfully deposited via a multistep sol-gel route assisted by spin-coating. These heterolayered PZT films, when annealed at a temperature in the range of 600–700C show (001)/(100) preferred orientation, demonstrate desired ferroelectric and dielectric properties. The most interesting ferroelectric and dielectric properties were obtained from the six-layered PZT thin film annealed at 650C, which exhibits a remanent polarization of 47.7 μC/cm2 and a dielectric permittivity of 1002 at 100 Hz. Reversible polarization constituents a considerably high contribution towards the ferroelectric hysteresis of the heterolayered PZT films, as shown by studies obtained from C-V and AC measurement.  相似文献   

6.
Abstract

Pb(Zr0.53Ti0.47)O3 (PZT) thin films were deposited on Pt and RuO2 coated Si and MgO substrates using the sol-gel process. Fatigue and retention tests were performed on these samples. The films grown on RuO2 electrodes are fatigue-free up to nearly 1011 cycles. Their retention life-time extrapolates to more than 1010 seconds. The fatigue behavior of films grown on Pt electrodes depends on the PZT film orientation. Highly oriented (001) PZT films maintain 50% of their initial P?r-P?r value after 1011 cycles. The randomly oriented films maintain less than 3% of the initial P?r-P?r value after 1011 cycles. However, the retention life-time of both highly oriented and randomly oriented PZT films grown on Pt electrodes extrapolates to higher than 1011 seconds. It appears that fatigue of films grown on RuO2 is mainly controlled by the film/electrode interface. On the other hand, fatigue of films grown on Pt appears to depend on both the film/electrode interface as well as on bulk effects.  相似文献   

7.
The Bi3.15Nd0.85Ti3O12 (BNT) thin films were deposited on Pt(111)/Ti/SiO2/Si substrates by using RF-magnetron sputtering method and studied the ferroelectric and leakage current charateristics. The polarization – electric field (P-E) hysteresis loops of BNT film was well saturated with the remnant polarization (2P r ) of 29.8 μC/cm2 and a coercive field (2E c ) of 121 kV/cm. The leakage current density – electric field (J-E) characteristics of the Pt/BNT/Pt capacitor reveals the presence of two conduction region, having Ohmic behavior at low electric field (below 50 kV/cm) and Schottky-emission or Poole-Frenkel emission at high electric field (above 60 kV/cm). The barrier height and trapped level of BNT films are estimated to be 1.11 eV and 0.90 eV, respectively.  相似文献   

8.
ABSTRACT

Multilayered piezoelectric micro-diaphragms have been successfully fabricated by micro-electro-mechanical-system (MEMS) processing. The micro-diaphragms consisted of diol based sol-gel derived Pb(Zr0.52Ti0.48)O3 (PZT) capacitor, sputtered Pt electrode, and low temperature oxide(LTO)/SiNx/Si substrate. The PZT film exhibited (111) oriented structure. The dielectric constant and loss of the PZT thin films were 800 and 3% at 100~ 100 kHz, respectively. The remanent polarization was 20 μ C/cm2. The lateral dimension of the PZT film was varied relative to the square-shaped supporting membrane with 300 or 400 μ m length. The relative size (ratio of lateral dimensions) of the PZT film to the supporting membrane was varied from 0.7 to 1.1 to investigate its influence on the system performance. The micro-diaphragm exhibited mechanical displacement from 0.067 to 0.135 μ m at 15 V and had a maximum displacement at a ratio of relative size of 0.8, regardless of the lateral size of the supporting membrane. The fundamental resonant frequency of the micro-diaphragm which has 300 μ m length supporting membrane was in the range of 348 kHz to 365 kHz, depending on the relative size. As the PZT size increased relative to the supporting membrane, the resonant frequency decreased and reached a minimum at the relative size of 0.8. The micro-diaphragm with the supporting membrane (400 μ m length) had a lower resonant frequency, i.e., 251~270 kHz, but showed a similar behavior to the micro-diaphragm with the supporting membrane (300 μ m length) in relation to the resonant frequencies with the relative size.  相似文献   

9.
ABSTRACT

We report on the deposition of Pb(Zrx,Ti1 - x)O3 (PZT) thin films by chemical solution deposition (CSD) on stainless steel foils. The electrical characterization proves good ferroelectric properties with a remnant polarization of 38 μ C/cm2. Since PZT is also piezoelectric the 35 μ m and 50 μ m thick metal foils are used to make piezoelectric actuated cantilever beams of several millimeter lengths. Actuated with 10–30 V a displacement up to 32 μ m was measured in quasi-static mode. In resonance mode the displacement increases several times at the same driving voltage.  相似文献   

10.
We demonstrate a water-immersible thin film lead zirconate titanate, Pb(Zr, Ti)O3, [PZT] actuator, without special passivation layer, towards in-vivo or in-vitro scanning probe microscope (SPM) measurements of living cells in water or biological fluids. In order to be water-immersible, the electrodes need to be electrically insulated and the piezoelectric layer needs to be protected against direct water contact. This paper describes our design solution with a simple fabrication process for a water-immersible piezoelectric device, which separates the bottom electrode from the top electrode by having a narrow ditch covered with PZT film. The PZT film is then encapsulated with the top metal electrode without insulation layer. In this structure, the PZT is sandwiched between the top and bottom metal electrodes to prevent water permeation. The device is fabricated using lift-off processing for the bottom and top electrodes, sol-gel spinning for the PZT thin film and wet etching for the PZT patterning. The piezoelectric constant, d31, is about –100 pC/N. The dielectric polarization and fatigue properties of the devices were measured in air and water. The spontaneous polarization, remnant polarization, coercive field and dielectric constant are 54 C/cm2, 15 C/cm2, 60 kV/cm and 1200, respectively. The polarization property of the device was unchanged in either air or water up to 1 × 109 continuous cycles.  相似文献   

11.
PbZr0.58Ti0.42O3 (PZT) ferroelectric thin films with Bi3.25La0.75Ti3O12 (BLT) buffer layer of various thickness were fabricated on Pt/TiO2/SiO2/p-Si(100) substrates by rf-magnetron sputtering method. The pure PZT film showed (111) preferential orientation in the XRD patterns, and the PZT/BLT films showed (110) preferential orientation with increasing thickness of the BLT layer. There were no obvious diffraction peaks for the BLT buffer layer, for its thin thickness in PZT/BLT multilayered films. There were the maximum number of largest-size grains in PZT/BLT(30 nm) film among all the samples from the surface images of FESEM. The growth direction and grain size had significant effects on ferroelectric properties of the multilayered films. The fatigue characteristics suggested that 30-nm-thick BLT was just an effective buffer layer enough to alleviate the accumulation of oxygen vacancies near the PZT/BLT interface. The comparison of these results suggests that the buffer layer with an appropriate thickness can improve the ferroelectric properties of multilayered films greatly.  相似文献   

12.
Thin films made of (100)/(001)-oriented Pb(Zr, Ti)O3 (PZT) were deposited by liquid-delivery metal-organic chemical vapor deposition on Ir/MgAl2O4/SiO2/Si(100) substrates. For comparison, PZT thin films were also deposited on Ir/MgO(100) substrates. The X-ray scan spectra for the (202) reflections revealed that the PZT films have four-fold symmetry. It indicates that the PZT films were epitaxially grown as a cube-on-cube structure on both substrates. The switchable polarization (Qsw) of the PZT capacitors on the silicon substrate was only 23 C/cm2 at 1.8 V; however, Qsw of PZT capacitors on MgO was 99 C/cm2. In the case of PZT films deposited on silicon, the volume fraction of (001)-oriented domains (which contribute to polarization switching) was 15.1% (calculated from an XRD pattern). This result is due to the lower Qsw of PZT capacitors on silicon. By piezoresponse-force microscopy, switchable and unswitchable domains could be identified by imaging color contrast, namely, (001) and (100) domains, respectively. Consequently, domain distribution of the PZT film on a silicon substrate indicates that the (001) domain exists in the (100) domain matrix.  相似文献   

13.
We report the fabrication of Al-doped ZnO thin-film transistors (FeFETs) on the ferroelectric Pb(Zr0.3Ti0.7)O3 (PZT) gate insulator for the application of nonvolatile random access memory. The results demonstrate the basic principle of Al-doped ZnO resistive switching between the high and low resistive states upon the polarization switching of ferroelectric layer. Own to the good ferroelectric property and high reliability of PZT, such as fatigue, high speed of signal reading and writing, low coercive electric field, etc., this device has an excellent electrical performance. The memory device exhibits a source-drain current modulation with an ON/OFF current ratio close 103.  相似文献   

14.
Abstract

Pulsed laser ablation has been used to deposit ferroelectric Pb(Zr, Ti)O3 (PZT) thin films on Si(100) and on yttrium-treated Si(100) substrates. The yttrium (Y) treatment of a Si surface followed by oxidation resulted in formation of a very thin, Y-enhanced SiO2 antidiffusion barrier layer, thereby suppressing the undesirable PZT/Si interdiffusion. The best PZT film grown on Y-treated Si(100) had a breakdown voltage of 0.6 MV/cm, a coercive field of 71 KV/cm, and a remanent polarization of 18 μC/cm2.  相似文献   

15.
《组合铁电体》2013,141(1):659-664
Ferroelectric Pb(Zr1 ? x Ti x )O3 (PZT) films were deposited on (001) MgO single crystals using sol-gel method. Structural properties and surface morphologies of PZT films were investigated using an X-ray diffractometer and a scanning electron microscopy, respectively. The dielectric properties of PZT films were investigated with the dc bias field of 0–135 kV/cm using interdigitated capacitors (IDC) which were fabricated on PZT films using a thick metal layer by photolithography and etching process. The small signal dielectric properties of PZT films were calculated by a modified conformal mapping method with low and high frequency data, such as capacitance measured by an impedance gain/phase analyzer at 100 kHz and reflection coefficient (S-parameter) measured by a HP 8510C vector network analyzer at 1–20 GHz. The IDC on PZT films exhibited about 67% of capacitance change with an electric field of 135 kV/cm at 10 GHz. These PZT thin films can be applied to tunable microwave devices such as phase shifters, tunable resonators and tunable filters.  相似文献   

16.
Thin films of neodymium-modified bismuth titanate Bi3.44Nd0.56Ti3O12 (BNT) were grown on Pt/TiO2/SiO2/Si substrates using chemical solution deposition method. The capacitors made by applying top Au electrodes on BNT films showed significantly improved values of the remanent polarization as compared to that using bismuth titanate Bi4Ti3O12 (BT) films. The 2P r value for the BNT capacitors was determined to be equal to 38 C/cm2 at an applied voltage of 24 V, whereas, for Bi4Ti3O12 (BT) capacitors a value of 20 C/cm2 was measured at the same applied voltage. The maximum piezoelectric and pyroelectric coefficients of 22 pm/V and 112 C/m2 K respectively, were measured for the BNT thin films.  相似文献   

17.
The Ba(Zr0.35Ti0.65)O3 (BZT) thin films were deposited via sol-gel process on LaNiO3-coated silicon substrates. XRD showed that the crystallinity of BZT film grown on LaNiO3 coated silicon substrates is better than that of BZT film grown on Pt. Both films showed perovskite phase and polycrystalline structure. The temperature dependent dielectric measurements revealed that the thin films had the relaxor behavior and diffuse phase transition characteristics. The capacitor tuning was about 44% for each BZT film grown on LaNiO3/Pt and Pt electrodes at 1 MHz. Especially, the values of dielectric loss at 1 MHz ranged from 0.02 to 0.009 in the bias range of 0 to 514 kV/cm, respectively. The leakage currents density of thin films grown on LaNiO3/Pt and Pt electrodes at 300 kV/cm was about 8.5 × 10–7 and 1.1 × 10–5 A/cm2, respectively. This work demonstrates a potential use of BZT films for application in tunable microwave devices.  相似文献   

18.
Abstract

Pb(Zrx,Ti1?x)O3 thin films were deposited on Pt/SiO2/Si substrates by the rf magnetron sputtering using an alloy target consisting of Zr-Ti alloy and Pb metal. The dependence of electrical properties on film thickness and sputtering gas pressure was investigated. The dielectric constant and the remanent polarization decreased and the coercive field increased with the decrease of the film thickness. In the dependence of gas pressure, the relative dielectric constant of the film with only a perovskite phase were in the range of 235–280, which were higher than those of the film with only a pyrochlore phase, 20. The asymmetry of hysteresis loops increased with the decrease of the gas pressure.  相似文献   

19.
Sandwich structured PbZr0.52Ti0.48O3/Pb(Mg1/3 Ta2/3)0.7Ti0.3O3/PbZr0.52Ti0.48O3 (PZT/PMTT/PZT) thin films have been successfully synthesized via a combined route involving sol-gel and RF magnetron sputtering. Insertion of the PMTT interlayer effectively suppressed formation of the heterogeneous “rosette” structure of PZT thin film when deposited onto Pt/Ti/SiO2/Si substrate. While both remanent polarization and coercive field were lowered for the sandwich structured films, the coercive field was reduced more significantly. Such sandwich structured films exhibit improved fatigue behavior and the relative permittivity can not be simply described as a series connection of individual components of perovskite layers.  相似文献   

20.
The phase formation and electrical properties of (Bi, La)4Ti3O12 (BLT) thin film and V-, Sm-doped BLT thin films prepared by the chemical solution deposition method on Pt/TiO2/SiO2/Si substrates have been investigated. It was observed that the microstructure and electrical properties of BLT thin films dramatically varied with V- and Sm-doping. The crystallinity and grain size of BLT thin films were definitely increased by V- and Sm-doping into BLT films, which resulted in the enhancement of remanent polarization in doped BLT films. The remanent polarization (Pr) of Sm-doped BLT films annealed for 3 min by an RTA system was about 9 C/cm2. The V- and Sm-doped BLT films also exhibited good fatigue characteristics under bipolar stressing to 1010 cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号