首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Surface interference electromyograms (EMG's) were recorded from the tibial muscle of a healthy subject during 50 percent maximal contraction and single motor unit action potentials (MUAP's) were isolated by averaging from the interference pattern. The formation of the EMG was simulated by summing isolated MUAP's according to the statistical properties of the corresponding motor unit discharges. Power spectral density functions (PSDF's) were finally computed for single MUAP's as well as for simulated and experimental EMG's and compared with each other.  相似文献   

2.
The speed of propagation of an action potential along a muscle fiber, its conduction velocity (CV), can be used as an indication of the physiological or pathological state of the muscle fiber membrane. The motor unit action potential (MUAP), the waveform resulting from the spatial and temporal summation of the individual muscle fiber action potentials of that motor unit (MU), propagates with a speed referred to as the motor unit conduction velocity (MUCV). This paper introduces a new algorithm, the MU tracking algorithm, which estimates MUCVs and MUAP amplitudes for individual MUs in a localized MU population using SEMG signals. By tracking these values across time, the electrical activity of the localized MU pool can be monitored. An assessment of the performance of the algorithm has been achieved using simulated SEMG signals. It is concluded that this analysis technique enhances the suitability of SEMG for clinical applications and points toward a future of noninvasive diagnosis and assessment of neuromuscular disorders.  相似文献   

3.
This paper presents a new algorithm for optimal adaptation of the signal templates of a matched filter bank used in the detection of the motor unit action potential waveforms (abbreviated as MUAP's) in an electromyogram (EMG). It is of interest, for clinical diagnosis and therapy, to detect as many MUAP's as possible in a single measurement, and to determine for each motor unit the repetition. rate of its respective MUAP. For this purpose, we have developed a computer program which, in addition to other subprograms, contains the adaptive filter bank mentioned above. The templates in this fllter bank have to be adapted to nonpredetermined changes in measurement conditions such as the movement of the needle electrode inserted in the muscle. In the present paper, the above templates are estimated by means of a "tumbling algorithm," so called because the successive MUAP's from a given motor unit are used as noisy data vectors in a time-varying Kalman filter-predictor framework, which alternately estinates their evolving shapes and identifies the time-varying parameters of the model generating them. The algorithm has been applied with success to synthetic and real EMG data.  相似文献   

4.
Variability between successive discharges of the single motor unit potential in the biceps brachii muscle, due to electromyographic (EMG) jitter, has been investigated. This jitter results from random arrival times of single fiber potentials at the electrode. A computer model has been used to generate single motor unit potentials incorporating the effects of EMG jitter. A computed variance peak was found in the fast rising edge of the motor unit potential for electrode sites outside of the motor unit territory. This peak was also observed in experimental data recorded from human subjects. The peak variance outside of the motor unit territoxy has also been mathematically related to the number of fibers in the motor unit, jitter, and the slope of the mean action potential at the center of the fast rising edge.  相似文献   

5.
Extracellular action potentials from 76 different muscle fibers in the human brachial biceps were recorded, with a 14 lead multielectrode, each leading-off surface being 25 ?m in diameter. Volume conduction of these action potentials was calculated by representing the low-pass filter characteristics of the muscle tissue by a transfer function with one time constant and an attenuation factor. The radial decline of the action potentials was calculated in steps of 5 ?m, and the pickup radius of the electrode, defined as the distance at which the peak-to-peak amplitude of the action potentials declines to 200 ?V, was computed. The pickup radius for the 25 ?m diameter electrode, assuming an average action potential peak-to-peak amplitude of 6.2 mV was 292 Mm. With this uptake area, a fiber density in the brachial biceps of 1.37 fibers/uptake area (the average number of fibers belonging to one motor unit and included within the electrode uptake area) and a fiber radius of 28 ?m, the electrode "sees" 34 different motor units.  相似文献   

6.
Automatic Decomposition of the Clinical Electromyogram   总被引:6,自引:0,他引:6  
We describe a new, automatic signal-processing method (ADEMG) for extracting motor-unit action potentials (MUAP's) from the electromyographic interference pattern for clinical diagnostic purposes. The method employs digital filtering to select the spike components of the MUAP's from the background activity, identifies the spikes by template matching, averages the MUAP waveforms from the raw signal using the identified spikes as triggers, and measures their amplitudes, durations, rise rates, numbers of phases, and firing rates. Efficient new algorithms are used to align and compare spikes and to eliminate interference from the MUAP averages. In a typical 10-s signal recorded from the biceps brachii muscle using a needle electrode during a 20 percent-maximal isometric contraction, the method identifies 8-15 simultaneously active MUAP's and detects 30-70 percent of their occurrences. The analysis time is 90 s on a PDP-11/34A.  相似文献   

7.
The leading edge, terminal wave, and slow afterwave of the motor-unit action potential (MUAP) are produced by changes in the strength of electrical sources in the muscle fibers rather than by movement of sources. The latencies and shapes of these features are, therefore, determined primarily by the motor-unit (MU) architecture and the intracellular action potential (IAP), rather than by the volume-conduction characteristics of the limb. We present a simple model to explain these relationships. The MUAP is modeled as the convolution of a source function related to the IAP and a weighting function related to the MU architecture. The IAP waveform is modeled as the sum of a spike and a slow repolarization phase. The MU architecture is modeled by assuming that the individual fibers lie along a single equivalent axis but that their action potentials have dispersed initiation and termination times. The model is illustrated by simulating experimentally recorded MUAPs and compound muscle action potentials.  相似文献   

8.
Many spatial filters have been proposed for surface electromyographic (EMG) signal detection. Although theoretical and modeling predictions on spatial selectivity are available, there are no extensive experimental validations of these techniques based on single motor unit (MU) activity detection. The aim of this study was to compare spatial selectivity of one- and two-dimensional (1-D and 2-D) spatial filters for EMG signal detection. Intramuscular and surface EMG signals were recorded from the tibialis anterior muscle of ten subjects. The simultaneous use of intramuscular wire and surface recordings (with the spike triggered averaging technique) allowed investigation of the activity of single MUs at the skin surface. The surface EMG signals were recorded with a grid of point electrodes (3 x 3 electrodes) and a ring electrode system at 15 locations over the muscle, with the wires detecting signals from the same intramuscular location. For most subjects, it was possible to classify, from the intramuscular recordings, the activity of the same MUs for all the contractions. The surface EMG signals were averaged with the intramuscularly detected MU action potentials as triggers. In this way, eight spatial filters--longitudinal and transversal, single and double differential (LSD, TSD, LDD, TDD), Laplacian (NDD), inverse binomial filter of the second order (IB2), inverse rectangle filter (IR), and differential ring system (C1)--could be compared on the basis of their spatial selectivity. The distance from the source (transversal with respect to the muscle fiber orientation) after which the surface detected potential did not exceed +/- 5% of the maximal peak-to-peak amplitude (detection distance) was statistically smaller for the 2-D systems and TDD than for the other filters. The MU action potential duration was significantly shorter with LDD and with the 2-D systems than with the other filters. The 2-D filters investigated (including C1) showed very similar performance and were, thus, considered equivalent from the point of view of spatial selectivity.  相似文献   

9.
Modeling of surface myoelectric signals. I. Model implementation   总被引:2,自引:0,他引:2  
The relationships between the parameters of active motor units (MU's) and the features of surface electromyography (EMG) signals have been investigated using a mathematical model that represents the surface EMG as a summation of contributions from the single muscle fibers. Each MU has parallel fibers uniformly scattered within a cylindrical volume of specified radius embedded in an anisotropic medium. Two action potentials, each modeled as a current tripole, are generated at the neuromuscular junction, propagate in opposite directions and extinguish at the fiber-tendon endings. The neuromuscular junctions and fiber-tendon endings are uniformly scattered within regions of specified width. Muscle fiber conduction velocity and average fiber length to the right and left of the center of the innervation zone are also specified. The signal produced by MU's with different geometries and conduction velocities are superimposed. Monopolar, single differential and double differential signals are computed from electrodes placed in equally spaced locations on the surface of the muscle and are displayed as functions of any of the model's parameters. Spectral and amplitude variables and conduction velocity are estimated from the surface signals and displayed as functions of any of the model's parameters. The influence of fiber-end effects, electrode misalignment, tissue anisotropy, MU's location and geometry are discussed. Part II of this paper will focus on the simulation and interpretation of experimental signals.  相似文献   

10.
This study analytically describes surface electromyogram (EMG) signals generated by a planar multilayer volume conductor constituted by different subdomains modeling muscle, bone (or blood vessel), fat, and skin tissues. The bone is cylindrical in shape, with a semicircular section. The flat portion of the boundary of the bone subdomain is interfaced with the fat layer tissue, the remaining part of the boundary is in contact with the muscle layer. The volume conductor is a model of physiological tissues in which the bone is superficial, as in the case of the tibia bone, backbone, and bones of the forearm. The muscle fibers are considered parallel to the axes of the bone, so that the model is space invariant in the direction of propagation of the action potential. The proposed model, being analytical, allows faster simulations of surface EMG with respect to previously developed models including bone or blood vessels based on the finite-element method. Surface EMG signals are studied by simulating a library of single-fiber action potentials (SFAP) of fibers in different locations within the muscle domain, simulating the generation, propagation, and extinction of the action potential. The decay of the amplitude of the SFAPs in the direction transversal to the fibers is assessed. The decay in the direction of the bone has a lower rate with respect to the opposite direction. Similar results are obtained by simulating motor unit action potentials (MUAPs) constituted by 100 fibers with territory 5 mm2. M waves and interference EMG signals are also simulated based on the library of SFAPs. Again, the decay of the amplitude of the simulated interference EMG signals is lower approaching the bone with respect to going farther from it. The findings of this study indicate the effect of a superficial bone in enhancing the EMG signals in the transversal direction with respect to the fibers of the considered muscle. This increases the effect of crosstalk. The same mathematical method used to simulate a superficial bone can be applied to simulate other physiological tissues. For example, superficial blood vessels (e.g., basilic vein, brachial artery) can influence the recorded EMG signals. As the electrical conductivity of blood is high (it is of the same order as the longitudinal conductivity in the muscle), the effect on EMG signals is opposite compared to the effect of a superficial bone.  相似文献   

11.
The shapes and firing rates of motor unit action potentials (MUAPs) in an electromyographic (EMG) signal provide an important source of information for the diagnosis of neuromuscular disorders. In order to extract this information from EMG signals recorded at low to moderate force levels, it is required: i) to identify the MUAPs composing the EMG signal, ii) to classify MUAPs with similar shape, and iii) to decompose the superimposed MUAP waveforms into their constituent MUAPs. For the classification of MUAPs two different pattern recognition techniques are presented: i) an artificial neural network (ANN) technique based on unsupervised learning, using a modified version of the self-organizing feature maps (SOFM) algorithm and learning vector quantization (LVQ) and ii) a statistical pattern recognition technique based on the Euclidean distance. A total of 1213 MUAPs obtained from 12 normal subjects, 13 subjects suffering from myopathy, and 15 subjects suffering from motor neuron disease were analyzed. The success rate for the ANN technique was 97.6% and for the statistical technique 95.3%. For the decomposition of the superimposed waveforms, a technique using crosscorrelation for MUAP's alignment, and a combination of Euclidean distance and area measures in order to classify the decomposed waveforms is presented. The success rate for the decomposition procedure was 90%  相似文献   

12.
As more and more intramuscular electromyogram (EMG) decomposition programs are being developed, there is a growing need for evaluating and comparing their performances. One way to achieve this goal is to generate synthetic EMG signals having known features. Features of interest are: the number of channels acquired (number of detection surfaces), the number of detected motor unit action potential (MUAP) trains, their time-varying firing rates, the degree of shape similarity among MUAPs belonging to the same motor unit (MU) or to different MUs, the degree of MUAP superposition, the MU activation intervals, the amount and type of additive noise. A model is proposed to generate one or more channels of intramuscular EMG starting from a library of real MUAPs represented in a 16-dimensional space using their Associated Hermite expansion. The MUAP shapes, regularity of repetition rate, degree of superposition, activation intervals, etc. may be time variable and are described quantitatively by a number of parameters which define a stochastic process (the model) with known statistical features. The desired amount of noise may be added to the synthetic signal which may then be processed by the decomposition algorithm under test to evaluate its capability of recovering the signal features.  相似文献   

13.
The following is an investigation of the ability of the autoregressive (AR) model to describe the spectrum of the processes underlying the recorded surface EMG. Surface EMG (SEMG) spectrum is influenced by two major factors; one attributed to the motor units (MU) firing rate and the second, the higher frequency one, to the morphology of the action potentials (AP) traveling along the muscle fiber. In the present paper, SEMG measurements were carried out on the biceps brachii muscle with fixed surface electrodes arrangement and isotonic conditions. Sufficient averaging of 0.5 s segments enabled the identification of the low-frequency peak related to the firing rates of the MU's.  相似文献   

14.
Physiologically based simulation of clinical EMG signals   总被引:1,自引:0,他引:1  
An algorithm that generates electromyographic (EMG) signals consistent with those acquired in a clinical setting is described. Signals are generated using a model constructed to closely resemble the physiology and morphology of skeletal muscle, combined with line source models of commonly used needle electrodes positioned in a way consistent with clinical studies. The validity of the simulation routines is demonstrated by comparing values of statistics calculated from simulated signals with those from clinical EMG studies of normal subjects. The simulated EMG signals may be used to explore the relationships between muscle structure and activation and clinically acquired EMG signals. The effects of motor unit (MU) morphology, activation, and neuromuscular junction activity on acquired signals can be analyzed at the fiber, MU and muscle level. Relationships between quantitative features of EMG signals and muscle structure and activation are discussed.  相似文献   

15.
In this study, power spectral density functions (PSDF's) were computed of interference EMG of various facial and jaw-elevator muscles during nonfatiguing submaximal static contractions, recorded with surface electrodes. A distinct peak was found in the PSDF's in the frequency region below 40 Hz. It was shown that the peak was due to genuine EMG activity and that it could not be considered as an artifact, which was caused by electrode displacements during contraction. An increase of contraction strength resulted in a shift of the peak to higher frequencies and a decrease of peak amplitude relative to the power spectral estimates above 40 Hz, which were shown to be determined by the shape of the motor unit (MU) action potentials. In accordance with mathematical models of the EMG PSDF, it was demonstrated that the peak indicates the dominant firing rate of the sampled MU's. Our results suggest that this can be defined as the firing rate of the first recruited low-threshold MU's, which may be expected to dominate the interference EMG signal because of their preponderance in number. The data further suggest that the peak can be more readily observed in PSDF's of facial and jaw-elevator muscles than in PSDF's of limb muscles. This might be related to differences in MU firing statistics.  相似文献   

16.
This study introduces the application of nonlinear spatial filters to help identify single motor unit discharge from multiple channel surface electromyogram (EMG) signals during low force contractions. The nonlinear spatial filters simultaneously take into account the instantaneous amplitude and frequency information of a signal. This property was used to enhance motor unit action potentials (MUAPs) in the surface EMG record. The advantages of nonlinear spatial filtering for surface MUAP enhancement were investigated using both simulation and experimental approaches. The simulation results indicate that when compared with various linear spatial filters, nonlinear spatial filtering achieved higher SNR and higher kurtosis of the surface EMG distribution. Over a broad range of SNR and kurtosis levels for the input signal, nonlinear spatial filters achieved at least 32 times greater SNR and 11% higher kurtosis for correlated noise, and at least 15 times greater SNR and 1.7 times higher kurtosis for independent noise, across electrode array channels. The improvements offered by nonlinear spatial filters were further documented by applying them to experimental surface EMG array recordings. Compared with linear spatial filters, nonlinear spatial filters achieved at least nine times greater SNR and 25% higher kurtosis. It follows that nonlinear spatial filters represent a potentially useful supplement to linear spatial filters for detection of motor unit activity in surface EMG at low force contractions.  相似文献   

17.
A new probabilistic inference based technique (IBC) for the classification of motor unit action potentials (MUAP's) is presented. This new technique discovers statistically significant relationships in the data and uses these relationships to generate classification rules. The technique was applied to the classification of MUAP's extracted from simulated myoelectric signals. Its performance was compared to that of classical template matching algorithms (TBC) applied to the same data. Using 32 time samples as features to represent the MUAP's it was found that the IBC based technique performed significantly better (p less than 0.005) than the TBC algorithms (83.0 +/- 2.6% versus 78.1 +/- 2.8% peak correct classification performance). As the size of the training set was reduced or as increasing numbers of random classification errors were introduced into the training data, the performance of the IBC and TBC techniques declined similarly. IBC performance remained superior until very small training sets (less than 30 MUAP's per motor unit) or training sets with large numbers of errors (greater than 50%) were used. Because the probabilistic inference technique can utilize nominal data it has the potential to use declarative problem domain knowledge which conceivably could improve its performance.  相似文献   

18.
Changes in surface electromyographic (EMG) amplitude during sustained, fatiguing contractions are commonly attributed to variations in muscle fiber conduction velocity (MFCV), motor unit firing rates, transmembrane action potentials and the synchronization or recruitment of motor units. However, the relative contribution of each factor remains unclear. Analytical relationships relating changes in MFCV and mean motor unit firing rates to the root mean square (RMS) and average rectified (AR) value of the surface EMG signal are derived. The relationships are then confirmed using model simulation. The simulations and analysis illustrate the different behaviors of the surface EMG RMS and AR value with changing MFCV and firing rate, as the level of motor unit superposition varies. Levels of firing rate modulation and short-term synchronization that, combined with variations in MFCV, could cause changes in EMG amplitude similar to those observed during sustained isometric contraction of the brachioradialis at 80% of maximum voluntary contraction were estimated. While it is not possible to draw conclusions about changes in neural control without further information about the underlying motor unit activation patterns, the examples presented illustrate how a combined analytical and simulation approach may provide insight into the manner in which different factors affect EMG amplitude during sustained isometric contractions.  相似文献   

19.
Time-scale analysis of motor unit action potentials   总被引:1,自引:0,他引:1  
Quantitative analysis in clinical electromyography (EMG) is very desirable because it allows a more standardized, sensitive and specific evaluation of the neurophysiological findings, especially for the assessment of neuromuscular disorders. Following the recent development of computer-aided EMG equipment, different methodologies in the time domain and frequency domain have been followed for quantitative analysis. In this study, the usefulness of the wavelet transform (WT), that provides a linear time-scale representation is investigated, for describing motor unit action potential (MUAP) morphology. The motivation behind the use of the WT is that it provides localized statistical measures (the scalogram) for nonstationary signal analysis. The following four WT's were investigated in analyzing a total of 800 MUAP's recorded from 12 normal subjects, 15 subjects suffering with motor neuron disease, and 13 from myopathy: Daubechies with four and 20 coefficients, Chui (CH), and Battle-Lemarie (BL). The results are summarized as follows: 1) most of the energy of the MUAP signal is distributed among a small number of well-localized (in time) WT coefficients in the region of the main spike, 2) for MUAP signals, we look to the low-frequency coefficients for capturing the average waveshape of the MUAP signal over long durations, and we look to the high-frequency coefficients for locating MUAP spike changes, 3) the Daubechies 4 wavelet, is effective in tracking the transient components of the MUAP signal, 4) the linear spline CH (semiorthogonal) wavelet provides the best MUAP signal approximation by capturing most of the energy in the lowest resolution approximation coefficients, and 5) neural network DY (DY) of Daubechies 4 and BL WT coefficients was in the region of 66%, whereas DY for the empirically determined time domain feature set was 78%. In conclusion, wavelet analysis provides a new way in describing MUAP morphology in the time-frequency plane. This method allows for the fast extraction of localized frequency components, which when combined with time domain analysis into a modular neural network decision support system enhances further the DY to 82.5% aiding the neurophysiologist in the early and accurate diagnosis of neuromuscular disorders.  相似文献   

20.
The electromyographic (EMG) signal provides information about the performance of muscles and nerves. At any instant, the shape of the muscle signal, motor unit action potential (MUAP), is constant unless there is movement of the position of the electrode or biochemical changes in the muscle due to changes in contraction level. The rate of neuron pulses, whose exact times of occurrence are random in nature, is related to the time duration and force of a muscle contraction. The EMG signal can be modeled as the output signal of a filtered impulse process where the neuron firing pulses are assumed to be the input of a system whose transfer function is the motor unit action potential. Representing the neuron pulses as a point process with random times of occurrence, the higher order statistics based system reconstruction algorithm can be applied to the EMG signal to characterize the motor unit action potential. In this paper, we report results from applying a cepstrum of bispectrum based system reconstruction algorithm to real wired-EMG (wEMG) and surface-EMG (sEMG) signals to estimate the appearance of MUAPs in the Rectus Femoris and Vastus Lateralis muscles while the muscles are at rest and in six other contraction positions. It is observed that the appearance of MUAPs estimated from any EMG (wEMG or sEMG) signal clearly shows evidence of motor unit recruitment and crosstalk, if any, due to activity in neighboring muscles. It is also found that the shape of MUAPs remains the same on loading.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号