首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interrelationship between defect chemistry, non-stoichiometry, grain boundary transport and chemical stability of proton conducting perovskites (doped alkaline earth cerates and zirconates) has been investigated. Non-stoichiometry, defined as the deviation of the A : M molar ratio in AMO3 from 1 : 1, dramatically impacts conductivity, sinterability and chemical stability with respect to reaction with CO2. In particular, alkaline earth deficiency encourages dopant incorporation onto the A-atom site, rather than the intended M-atom site, reducing the concentration of oxygen vacancies. Transport along grain boundaries is, in general, less favorable than transport through the bulk, and thus only in fine-grained materials does microstructure impact the overall electrical properties. The chemical stability of high conductivity cerates is enhanced by the introduction of Zr. The conductivity of BaCe0.9–x Zr x M0.1O3 perovskites monotonically decreases with increasing x (increasing Zr content), with the impact of Zr substitution increasing in the order M = Yb Gd Nd. Furthermore, the magnitude of the conductivity follows the same sequence for a given zirconium content. This result is interpreted in terms of dopant ion incorporation onto the divalent ion site.  相似文献   

2.
Creep in pure and two phase nickel-doped alumina has been investigated in the stress range 0.70 to 4.57 kgf mm–2 (1000 to 6500 psi), and temperature range 1450 to 1800° C, for grain sizes from 15 to 45 m (pure alumina) and 15 to 30 um, (nickel-doped alumina). The effect of stress, grain size and temperature on the creep rate suggests that diffusion controlled grain-boundary sliding is the predominant creep mechanism at low stresses and small grain sizes. However, the stress exponents show that some non-viscous boundary sliding occurs even at the lowest stresses investigated. This mechanism is confirmed by metallographic evidence, which shows considerable boundary corrugation in the deformed aluminas. At higher stresses and larger grain sizes the localized propagation of microcracks leads to high stress exponents in the creep rate equation. The nickel dopant, which introduces an evenly distributed spinel second phase into the alumina matrix, increases the creep rate and enhances boundary sliding and localized crack propagation. The weakening effect of the second phase increases with grain size, and tertiary creep occurs at strains of 0.5% and below in large grained material.  相似文献   

3.
In order to produce semiconductive (Ba0.8Sr0.2) (Ti0.9Zr0.1)O3 ceramics (BSZT), providing low resistivity for boundary-layer capacitor applications, a controlled valency method and a controlled-atmosphere method were applied and studied. In the controlled-valency method, trivalent ions (La3+ Sb3+) and pentavalent ions (Nb5+, Sb5+, Ta5+) were doped into BSZT ceramics, while in the controlled-atmosphere method, samples were sintered in air and a reducing atmosphere. The doped BSZT ceramics sintered in the reducing atmosphere showed much lower resistivities and smaller temperature coefficient of resistivity (TCR) than those sintered in air, indicating that low partial pressure of oxygen will increase the solubility of the donor dopant and enhance the grain growth. In addition, a small negative TCR at low temperature, as well as a small positive TCR at higher temperature, are also observed for specimens fired in a reducing atmosphere. The former is attributed to the semiconductive grain and the latter to the small barrier layer formed at the grain boundary.  相似文献   

4.
The effect of simultaneous doping with manganese and titanium on diffusional creep was studied in dense, polycrystalline alumina over a range of grain sizes (4–80m) and temperatures (1175–1250° C). At a total dopant concentration of 0.32–0.37 cation %, diffusional creep rates were enhanced considerably such that the temperature at which cation mass transport was significant was suppressed by at least 200° C compared to that observed in undoped material. The Mn-Ti (and Cu-Ti) dopant couple was far more effective in enhancing creep rates and suppressing sintering temperatures than the Fe-Ti couple. The enhanced mass transport kinetics are believed to be caused by significant increases in both aluminium lattice and grain-boundary diffusion. When aluminium grain-boundary diffusion is enhanced by increasing the concentration of divalent impurity (Mn2+, Fe2+) or by creep testing at low temperatures, creep deformation is Newtonian viscous.  相似文献   

5.
Barium titanate, which is characterized by a positive temperature coefficient of resistance (PTCR), is widely used in practice. At the same time, it is unknown why only a small percentage of the introduced donor dopant takes part in the formation of PTCR effect, which phases appear at grain boundaries, how the introduced acceptor dopants affect the properties of grains. Elucidation of the above questions is of considerable scientific and practical interest. It has been shown that the phases Bа6Ti17O40 and Y2Ti2O7 precipitate on grains of barium titanate doped with donor dopant (yttrium). We identified paramagnetic impurities (iron, manganese, chromium) in starting reagents. These impurities can occupy titanium sites. Therefore, the part of the donor dopant that is spent on the charge exchange of acceptor dopants does not participate in the charge exchange of titanium Ti4+ → Ti3+, which is responsible for the appearance of PTCR effect in barium titanate. It has been found that an extra acceptor dopant (manganese) is distributed mainly at grain boundaries and in the grain outer layer. It has been shown that manganese ions introduced additionally (as acceptor dopants) increase the potential barrier at grain boundaries and form a high-resistance outer layer in PTCR ceramics. The resistance of grains, outer layers, and grain boundaries as a function of the manganese content has been investigated.
Oleg V’yunovEmail:
  相似文献   

6.
Transient creep data for high-purity polycrystalline alumina are examined at the testing temperature of 1150–1250 °C. The data are analysed in terms of the effect of stress and temperature on the extent of transient time and strain.In order to explain the observed transient creep, a time function of creep strain is proposed from a two-dimensional model based on grain boundary sliding. The grain boundary sliding is assumed to take place by the glide of grain boundary dislocations accommodated by dislocation climb in the neighboring grain boundaries. The time function for a creep strain obtained from the model is given in a form
which is similar to the previous empirical formula describing the experimental creep curves in metallic alloys. The model predicts that the transient creep strain T is approximately proportional to and the extent of transient creep time tT is inversely proportional to flow stress. The prediction is consistent with the experimental data in high-purity, fine-grained alumina at temperatures between 1150 and 1250°C.  相似文献   

7.
Transparent alumina is often processed with sintering additives such as, Y, La, and Mg, in order to limit its grain growth at high sintering temperatures. Usually, these additives segregate to the grain boundaries due to their larger cationic size than Al and low solubility in bulk α-alumina. The grain boundary excess of these additives plays a key role in determining stable grain boundary complexions and thereby, the grain growth characteristics of the polycrystalline alumina. In the current work, the grain boundary segregation of trivalent (Y, La) as well as bivalent (Mg) dopants on several alumina grain boundaries was simulated using the force field based energy minimization method. Calculated segregation energy plots and atomistic structure analysis, for the case of trivalent dopants, suggest that there is a critical concentration (3–4 atoms/nm2) for achieving the lowest mobility monolayer grain boundary complexion. The bivalent dopant Mg plays a role in grain boundary complexion through creating ordered arrays of oxygen vacancies at the grain boundary and helps create the space for the easier occupation of the grain boundary cationic sites by the trivalent dopants in case of codoping. It was also observed that the twin grain boundaries are more preferable in comparison to general high angle grain boundaries to obtain monolayer complexions, which are necessary for limiting grain growth. The use of atomistic simulations can thus guide the experimentalist towards optimum dopant concentrations to better control ceramic microstructures. In a more general sense the possibility of second phase formation or an incipient second phase for high grain boundary concentrations >8 cations/nm2 is briefly discussed.  相似文献   

8.
Bi3+ ions substituting at Ba-sites in a limited concentration range with another donor dopant occupying the Ti-sites in polycrystalline BaTiO3 enhanced the positive temperature coefficient of resistance (PTCR) by over seven orders of magnitude. These ceramics did not require normal post sinter annealing or a change to an oxygen atmosphere during annealing. These ceramics had low porosities coupled with better stabilities to large applied electric fields and chemically reducing atmospheres. Bi3+ ions limited the grain growth to less than 8 m in size, they enhanced the concentration of acceptor-type trap centres at the grain-boundary-layer regions and maintained complete tetragonality at low grain sizes in BaTiO3 ceramics.  相似文献   

9.
Role of magnesia and silica in alumina microstructure evolution   总被引:1,自引:0,他引:1  
The effects of MgO and SiO2 additive distributions on alumina grain morphology have been characterized using high-resolution imaging secondary ion mass spectrometry (HRI-SIMS). In alumina samples singly-doped with MgO, the concentration of Mg segregated to grain boundaries is independent of grain boundary length for a majority of grain boundaries studied. Mg segregant therefore redistributes from grain boundaries to microstructural sinks, such as pores and/or second phases, during grain coarsening. In samples singly-doped with SiO2, abnormal grain growth develops and the concentration of Si at grain boundaries is also independent of grain boundary length. Redistribution of segregants is again necessary in this case to maintain constant grain boundary composition. Codoping with Mg/Si > 1 suppresses abnormal grain growth as a result of increased mutual solid solubility of both ions and an associated decrease in grain boundary segregation. Grain growth kinetics for doped aluminas are reconsidered in light of these observations.  相似文献   

10.
The addition of glass phase can control the grain boundary structure and hence the mechanical properties of tetragonal zirconia polycrystals (TZP). To reveal the effect of the glass dopant on the high-temperature deformation behavior of TZP, SiO2-doped TZP, (SiO2–Al2O3)-doped TZP, (SiO2–MgO)-doped TZP and undoped TZP were prepared and their grain boundary structure, chemical composition and chemical bonding state were investigated by high resolution electron microscopy (HREM), energy dispersive X-ray spectroscopy (EDS) and electron energy loss spectroscopy (EELS) using a field-emission-type transmission electron microscope (FE-TEM). It was found that no amorphous film was formed along the grain boundaries in any of the specimens examined, but amorphous pockets formed at multiple grain boundary junctions in three kinds of glass-doped specimens. In the glass-doped specimens, the segregation of yttrium, silicon and the added metal ions (Al3+ or Mg2+) was observed over a width of several nm across the grain boundaries. The addition of pure SiO2 much enhanced the ductility in TZP, although further addition of a small amount of Al2O3 or MgO to SiO2 phase resulted in a marked reduction in the tensile ductility of SiO2-doped TZP. EELS measurements and molecular orbital (MO) calculations using a cluster model revealed that the ductility of TZP was related to the bond overlap population (BOP) at the grain boundaries, which was influenced by the kinds of segregated dopants. That is, the presence of Si4+ increases the BOP, strengthening the grain boundary bonding strength and thus preventing cavity formation, but Al3+ and Mg2+ decrease the BOP, enhancing the grain boundary cavitation and thus reducing the ductility. Furthermore, the dynamic behavior of SiO2 in TZP was observed using a TEM in situ heating technique, and the results supported the fact that that Si segregates along the grain boundaries.  相似文献   

11.
We have performed atomic-level first principle electronic structure calculations on doped grain boundaries (GB) in SrTiO3. This was motivated by the electron holography experiments, which were able to quantify the electrostatic potential and the associated space charge distribution across the Mn-doped GB in this material. The embedded cluster Discrete Variational (DV)-X method was used to determine the charge and the densities of states for several idealized models of a single crystal and symmetrical tilt grain boundaries in SrTiO3. Special attention was given to the role of Mn+2 and Mn+3 acceptors substituting for Ti+4 resulting in charge segregation across the grain boundaries, which was shown in the electron holography experiments. We have found that Mn replacing Ti prefers to have valence charge around +2 and this picture agrees with the experimental observation of negative grain boundary charges in the GB core.  相似文献   

12.
The rate of diffusional creep varies with grain size x, either as 1/x 2 or 1/x 3, depending on whether lattice or grain boundary diffusion is dominating. Since the rate of grain growth is proportional to 1/x p, where p1, the creep and grain growth relationships can be combined to predict the transient creep that results from the two processes operating concurrently. An important result is obtained for grain boundary diffusion creep (Coble creep), where two regimes of behaviour are predicted depending on the value of p. For normal grain growth (p=1) and up to a critical value p=2, the transient gives rise to an upper limit to the grain boundary diffusional creep strain. For p>2, no limiting strain is predicted. The role of the limiting strain is discussed in the context of the various experimental attempts that have been made to verify the Coble mechanism.  相似文献   

13.
The influence of TiCl3 solution on the room temperature (r.t.) resistivity and electrical properties of Ba0.92Ca0.08TiO3 PTCR ceramics was studied. The results indicate that the PTC effect can be improved significantly when an appropriate amount of TiCl3 in solution is added to the original materials. Some of the doped Ti3+ ions segregate at grain boundaries behaving as acceptors by substituting for Ti site or valence varying (from Ti3+ to Ti4+). As a result, the surface charge density N s) increases and the barrier height at grain boundaries () is enhanced.  相似文献   

14.
High permittivity ceramics with eff > 105 can be realized from semiconducting BaTiO3 by the two-step processing namely, sintering the donor doped samples in static air followed by electroding with the fired-on silver/glass composites. Doping with Sb5+ and Bi3+ not only enhances the grain conductivity but also increases the grain size (10–60 m), when sintered at 1370 C in static air. The ceramic samples are electroded with the paste containing nanometer particles of silver dispersed in varied amounts of low melting (600–900 C) glass compositions PbO + Bi2O3 + B2O3 ± SiO2 ± CuO. High permittivities are obtained for these capacitors stable over a wider range of temperature and over a broad frequency range. The grain boundary layer effect superimposed with the contributions from the barrier layers formed during electroding, related to ceramic microstructure is proposed to be responsible for the unusual high permittivity in semiconducting BaTiO3. The energy dispersive X-ray analyses indicate selective melting reactions at the grain boundary layers with higher concentrations of the low melting oxides at the grain boundaries near to the electrodes. Impedance spectroscopy on BaTiO3 ceramics demonstrates that they are electrically heterogeneous with insulating grain boundaries together with the ceramic/electrode interface acting as barrier layers. On the basis of the symmetrical Schottky-barrier model of the grain boundary region, the barrier height and donor concentration Nd of the grains were obtained by the modified 1/C2V plot. These modified boundary layer capacitors having high field strength withstandability can be used in a wide range of frequencies.  相似文献   

15.
Investigations were made of varistor microstructure, the morphology of Bi2O3 at multiple ZnO grain junctions, Bi2O3/ZnO grain boundaries and ZnO/ZnO grain boundaries (especially whether Bi2O3 is present or not at the ZnO/ZnO grain boundary) by means of high-resolution transmission electron microscopy and X-ray microanalysis in the scanning transmission electron microscope. Bi2O3 at multiple ZnO grain junctions consists of small particles of 0.1m in diameter, and they are vitrified to some extent. It is suggested that bismuth ions dissolve into ZnO grains over a 30 nm range from a Bi2O3/ZnO grain boundary; however, there is no bismuth at ZnO/ZnO grain boundaries.  相似文献   

16.
High performance dielectric materials are highly required for practical application for energy storage technologies. In this work, high-k pristine and modified calcium copper titanate having nominal formula Ca0.95Nd0.05Cu3Ti4?xZrxO12 (x?=?0.01, 0.03 & 0.10) were synthesized and characterized for structural and dielectric properties. Single phase formation of the synthesized compositions was confirmed by X-ray diffraction patterns and further analysed using Rietveld refinement technique. Phase purity of the synthesized ceramics was further confirmed by Energy-dispersive X-ray Spectroscopy (EDX) analysis. SEM images demonstrated that grain size of the modified CCTO ceramics was controlled by Zr4+ ions due to solute drag effect. Impedance spectroscopy was employed to understand the grain, grain boundaries and electrode contribution to the dielectric response. Nyquist plots were fitted with a 2R-CPE model which confirms the non-ideality of the system. Substitution of specific concentration of Nd and Zr improved the dielectric properties of high dielectric permittivity (ε′ ~?16,902) and minimal tanδ (≤?0.10) over a wide frequency range. The giant ε′ of the investigated system was attributed to internal barrier layer capacitance (IBLC) effect and reduced tanδ accredited to enhanced grain boundaries resistance due to substitution of Zr4+ ions at Ti4+ site.  相似文献   

17.
The creep properties of silicon nitride containing 6 wt % yttria and 2 wt% alumina have been determined in the temperature range 1573 to 1673 K. The stress exponent, n, in the equation n was determined to be 2.00±0.15 and the true activation energy was found to be 692±25 kJ mol–1. Transmission electron microscopy studies showed that deformation occurred in the grain boundary glassy phase accompanied by microcrack formation and cavitation. The steady state creep results are consistent with a diffusion controlled creep mechanism involving nitrogen diffusion through the grain boundary glassy phase.  相似文献   

18.
POCl3-BCl3 solutions activated with Nd3+ and UO 2 2+ ions were prepared. Significant differences were found in the absorption and luminescence spectra of Nd3+ in inorganic laser liquids prepared from different neodymium compounds. In POCl3-BCl3-Nd3+ solutions prepared from Nd(ClO4)3 and Nd(CF3COO)3, the half-width of the Nd3+ luminescence band corresponding to the main laser transition, 4 F 3/24 I 11/2, is 14.0 ± 0.1 and 5.2 ± 0.2 nm, respectively. It is assumed that the Nd3+ heterocomplex that is formed in solutions and has uniquely narrow luminescence band incorporates six BCl3 molecules. The POCl3-BCl3-235UO 2 2+ -Nd3+ solutions have properties typical of POCl3-MCl x solutions with halides of metals characterized by high oxygen affinity (M = Zr, Ti, Si, and Al).  相似文献   

19.
High temperature plastic flow or grain boundary failure in oxide ceramics such as Al2O3 and tetragonal ZrO2 polycrystal (TZP) is sensitive to small levels of doping by various cations. For example, high temperature creep deformation in fine-grained, polycrystalline Al2O3 is highly suppressed by 0.1 mol% lanthanoid oxide or ZrO2-doping. An elongation to failure in superplastic TZP is improved by 0.2–3 mol% GeO2-doping. A high-resolution transmission electron microscopy (HRTEM) observation and an energy-dispersive X-ray spectroscopy (EDS) analysis revealed that the dopant cations tend to segregate along the grain boundaries in Al2O3 and TZP. The dopant effect is attributed to change in the grain boundary diffusivity due to the grain boundary segregation of the dopant cations. A molecular orbital calculation suggests that ionicity is one of the most important parameters to determine the high temperature flow stress, and probably, the grain boundary diffusivity in the oxide ceramics.  相似文献   

20.
Structural alumina ceramics used in ballistic armour and wear applications with varying alumina contents and manufactured using both slip casting and dry pressing techniques, have been investigated and characterized in terms of their hardness, elastic modulus, fracture toughness, and microstructural characteristics. For a given alumina content, fracture toughness decreases with increasing hardness. Dry pressed samples show slightly higher hardness, and lower fracture toughness for the same alumina content. The hardness, elastic modulus and fracture toughness are higher for the 98% alumina samples while the differences between the lower alumina samples (95 and 91%) are negligible. The grain sizes are bimodal with the majority 3 m and the size range narrows with decreasing alumina content. The microstructures are composed of a matrix phase, corundum (-Al2O3), grain boundary phases consisting of a glassy phase with varying Al2O3, SiO2, and CaO contents, a crystalline phase, triclinic anorthite (CaAl2Si2O8), and an additional phase, spinel (MgAl2O4), in the lower alumina samples. The proportion of the boundary phase increases with decreasing alumina content and no effect of fabrication method is observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号