首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 487 毫秒
1.
A new contact-type on-machine measurement system is designed and developed for the evaluation of a micro cutting edge profile. The measurement system is composed of a compact probe unit having a sharp stylus mounted on a flexible beam, an inner displacement sensor for the detection of the stylus displacement, and a two-axis precision positioning system. For the evaluation of tool faces having a steep slope, a new probing procedure with the enhancement of the inner displacement sensor integrated into the probe unit is newly proposed. After the design and development of the probe unit, the feasibilities of the developed measurement system and the proposed probing procedure are demonstrated through some basic experiments. Regarding the out-of-straightness and angular error motion of the two-axis positioning system employed in the developed measurement system, a pair of length gauges is newly employed to reduce the influences of error motions of the stage system. The topographic profile of the micro cutting edge obtained by the measurement system with the modified probe unit is then compared with those obtained by a commercial stylus profiler and a laser confocal microscope. The feasibility and effectiveness of the developed on-machine tool edge profile measurement system are also demonstrated through uncertainty analysis based on the GUM with the Monte-Carlo method.  相似文献   

2.
Microstructured roll workpieces have been widely used as functional components in the precision industries. Current researches on quality control have focused on surface profile measurement of microstructured roll workpieces, and types of measurement systems and measurement methods have been developed. However, low measurement efficiency and low measurement accuracy caused by setting errors are the common disadvantages for surface profile measurement of microstructured roll workpieces. In order to shorten the measurement time and enhance the measurement accuracy, a method for self-calibration and compensation of setting errors is proposed for surface profile measurement of microstructured roll workpieces. A measurement system is constructed for the measurement, in which a precision spindle is employed to rotate the roll workpiece and an air-bearing displacement sensor with a micro-stylus probe is employed to scan the microstructured surface of the roll workpiece. The resolution of the displacement sensor is 0.14 nm and that of the rotary encoder of the spindle was 0.15r~. Geometrical and mathematical models are established for analyzing the influences of the setting errors of the roll workpiece and the displacement sensor with respect to the axis of the spindle, including the eccentric error of the roll workpiece, the offset error of the sensor axis and the zero point error of the sensor output. Measurement experiments are carded out on a roll workpiece on which periodic microstructures are a period of 133 i~m along the circumferential direction. Experimental results demonstrate the feasibility of the self-compensation method. The proposed method can be used to detect and compensate the setting errors without using any additional accurate artifact.  相似文献   

3.
This paper presents surface-profiling based gear pitch deviation measurement for an involute spur gear. A rotary profiling system, which consists of an air-bearing spindle and a displacement sensor with a diamond stylus, is employed to measure gear pitch deviation. In measurement of gear pitch deviation, an eccentric error between a gear axis and a motion axis of the rotary stage in the profiling system would affect accuracy of gear profile measurement. In this paper, at first, the influence of the eccentric error on measurement of gear pitch deviation is estimated in computer simulation based on a geometric model of the profiling system. After that, a new scanning method named “opposite-direction dual scanning method” is proposed so that a steep profile of gear flank surface with a local slope of up to 90° can be measured by the developed rotary profiling system. For compensating distortions in the measured gear tooth profile, which are induced not only by the eccentric error but also by a probe offset introduced by the proposed scanning method, a self-calibration and compensation method is applied. To verify the feasibility of the proposed method, measurement of gear pitch deviation of a master involute spur gear with a certificate data is carried out. Measurement uncertainty of the proposed method is also analyzed.  相似文献   

4.
Ballscrew is a precision mechanical component used to convert rotational motion to linear motion in the precision linear stage. The precision measuring system for the screw's cumulative-lead error is already well known. Up to now, however, there is no suitable measuring equipment for internal cumulative-lead error of the nut. For a matching pair, it is not reasonable to understand the quality of only one piece. This paper presents a developed automatic cumulative-lead error measuring system for ballscrew nuts. The nut is clamped by a rotational stage, in which the moving angle is detected by a rotary encoder. The probing ball is inserted into the nut and remains in contact with the thread groove of the nut. The probe arm is mounted on a linear slide so that when rotating the nut, the probing ball will be pushed by the groove wall and moved axially. A high-resolution diffraction scale is employed to detect the linear movement of the probe to nanometer resolution. Combining the angular and linear motions, the cumulative-lead error of the nut can be realized. In practice, however, the nut will cause typical spindle errors during rotating, including axial slip, radial run out, and tilt motions. These errors have to be compensated in order to guarantee the accuracy of measurement results. A multi-sensor error compensation system is thus developed. Experimental results show the applicability of this developed measuring system.  相似文献   

5.
This paper presents the development of a real-time, contact-based, high frequency, response profilometer employed as a roundness gauge for measuring circular form error for 100% part inspection on the shop floor with an accuracy of better than 0.5 μm with measurement times of less than 1 s. The gauge head is a closed-loop controlled mechanism comprising a contact force probe that is rigidly attached to a high bandwidth linear translator. The gauge head assembly is, in turn, attached to a precision spindle. The objective of the complete tool is to contact the sidewall of the circular feature, translate the probe tip to produce a defined contact force with the workpiece and rotate the gauge head assembly. During rotation of the spindle, this contact force is maintained at a nominally constant value by dynamically translating the force probe along a radial direction to follow surface deviations. The gauge head assembly (including force probe and servo drive) has a fundamental mode natural frequency of 330 Hz while scanning the workpiece with a constant contact force typically less than 100 mN. Form error (deviation from a nominal circle) is measured using a capacitance-based displacement sensor measuring the relative radial displacement of the probe with the spindle rotating at a constant rotation speed. This paper discusses the design and characterization of this metrology tool.  相似文献   

6.
This paper describes the measurement of straightness error motions (vertical straightness and horizontal straightness) and rotational error motions (pitch, yaw and roll) of a commercial precision linear air-bearing stage actuated by a linear motor. Each of the error motions was measured by two different methods for assurance of reliability. The stage was placed in the XY-plane and moved along the X-direction. The pitch error and yaw error, which were measured by an autocollimator and the angle measurement kit of a laser interferometer, were about 8.7 and 1.6 arc-s, respectively, over a travel of 150 mm with a moving speed of 10 mm/s. The roll error was measured by the autocollimator through scanning a flat mirror along the X-direction. The second method for roll error measurement was to scan two capacitance-type displacement probes along the flat surface placed in the XZ-plane. The two probes with their sensing axes in the Y-direction were aligned with a certain spacing along the Z-axis. The roll error can be obtained by dividing the difference of the outputs of the two probes by the spacing between the two probes. The roll error was measured to be approximately 11.8 arc-s over the 150 mm travel. The horizontal straightness error and the vertical straightness error (Y- and Z-straightness errors) were measured by using the straightness measurement kit of the laser interferometer. The second method for straightness measurement was to scan the flat surface with a capacitance-type displacement probe. The horizontal and vertical straightness errors of the stage over the 150 mm travel were measured to be approximately 207 and 660 nm, respectively.  相似文献   

7.
This paper describes a scanning multi-probe system for measuring straightness profiles of cylinder workpieces. The system consists of two probe-units, each having three displacement probes. The two probe-units, which are placed on the two sides of the test cylinder, are moved by a scanning stage to scan the two opposed straightness profiles of the cylinder simultaneously. A differential output calculated from the probe outputs in each probe-unit cancels the influence of error motions of the scanning stage, and a double integration of the differential output gives the straightness profile. It is verified that the difference between the unknown zero-values of the probes in each probe-unit (zero-difference) will introduce a parabolic error term in the profile evaluation result, which is the largest error source for straightness measurement of long cylinders. To make zero-adjustment accurately, the cylinder is rotated 180° and scanned by the probe-units again after the first scanning. The zero-differences of the probe-units, as well as the straightness profiles of the cylinder, can be accurately evaluated from the output data of the two measurements. The effectiveness of this method is confirmed by theoretical analysis and experimental results. An improved method, which can measure the variation of the zero-difference during the scanning, is also presented.  相似文献   

8.
This paper presents large-area profile measurement of ultra-precision diamond turned sinusoidal surfaces by using a specially developed scanning tunneling microscopy (STM). The new prototype of STM system employs a long stroke PZT servo actuator as the Z-directional scanner, an integrated capacitance displacement sensor to accurately measure the Z-directional profile height, a motorized stage with long traveling stroke for carrying out large-area scanning. A simple method for self-calibration of the inevitable sample tilt is proposed in order to achieve large-area measurement without tip-crashing or losing of tip-sample interaction. Several types of ultra-precision machined sinusoidal freeform surfaces with different geometrical parameters are measured by the new STM system over large scanning areas at the scale of millimeters. Specially, a sinusoidal surface with peak-valley amplitude of 22 μm and periodical wavelength of 550 μm is successfully measured and imaged by the STM system. The measurement repeatability error, repeatability standard deviation and measured profile deviation are also evaluated. It is confirmed that the new STM system is capable of carrying out large-area as well as large-amplitude measurement of the ultra-precision machined sinusoidal surfaces.  相似文献   

9.
H.F.F. Castro   《Measurement》2008,41(5):526-537
This paper presents a method for assessing radial and axial error motions of spindles. It uses the Hewlett Packard 5529A laser interferometer. The measurement is made using reflection directly from a high-precision sphere. Such object is used as the optical reflector. The sphere is affixed at the end of a wobble device, which is clamped in the spindle. The principle of measurement is similar to that of a linear interferometer, except that the high-precision sphere is used in place of the usual retroreflector. A convergent lens is utilized to focus the laser beam to a small spot on the sphere surface. This minimizes the dispersion of the beam due to the reflection on the spherical surface. A software package has been developed for data acquisition and presentation of the error motion polar plots of the spindle. Application of this spindle error calibrator on a CNC machining centre is undertaken. The results are presented and discussed.  相似文献   

10.
针对现有时栅角位移传感器采用漆包线绕制工艺加工线圈,导致线圈布线不均且容易随时间发生变化进而影响测量精度的问题,提出一种基于PCB技术的新型时栅角位移传感器。该传感器通过在PCB基板的不同层上布置特定形状的激励线圈和感应线圈,形成两个完全相同并沿圆周空间正交的传感单元;当在两传感单元的激励线圈中分别通入时间正交的两相激励电流后,通过导磁定子基体和具有特定齿、槽结构的导磁转子对传感单元内的磁场实施精确约束,使两传感单元的感应线圈串联输出初相角随转子转角变化的正弦感应信号;最后通过高频时钟脉冲插补初相角实现精密角位移测量。利用有限元分析软件对传感器进行了建模和仿真。根据仿真模型制作了传感器实物,开展了验证实验,并对实验中角位移测量误差的频次和来源进行了详细分析。经过标定和补偿,最终获得了整周范围内误差在-2.82″~2.02″的时栅角位移传感器。理论推导、仿真分析和实验验证均表明,该传感器不仅能实现精密角位移测量,还能在激励线圈和感应线圈空间极距和信号质量不变的情况下,将位移测量的分辨力从信号源头提高1倍,且结构简单稳定、极易实现,特别适用于环境恶劣的工业现场。  相似文献   

11.
The optical laser displacement sensor is widely used for noncontact measurement of the three-dimensional (3D) shape profile of the object surface. When the surface of an object has a slope variation, the sensor gain is proportionally varied according to that of the object surface. In order to solve the sensor gain variation problem, the constant gap control method is applied to adjust the gap to the nominal distance. Control error compensation is also proposed to cope with the situation even when the gap is not perfectly controlled to the nominal distance using an additional sensor attached to the actuator. 3D shape measurement applying the proposed constant gap control method shows better performances rather than the constant sensor height method.  相似文献   

12.
This paper presents a multi-orientation error separation technique to remove the artifact form error from the radial measurements to obtain the radial spindle error motions of miniature ultra-high-speed (UHS) spindles. Unlike the existing approaches, the present technique neither relies on high-accuracy fixtures, nor necessitates measurements from specific orientations of the artifact. Rather, the spindle error motions are measured from a set of arbitrary artifact orientations using laser Doppler vibrometry (LDV). The angle of each artifact-setup orientation with respect to the spindle is determined with high precision through reflectivity measurement of the marks made on both the artifact and the spindle using another LDV. Although the presented approach can be applied by using different sensors (e.g., capacitance probes), we demonstrate the approach using LDVs. With the displacement measurement direction fixed, measurements are conducted from both LDVs for multiple orientations of the artifact. Using the unique implementation scheme developed in this paper, data from these orientations are post-processed to compute the artifact form error and further remove it from the radial motion measurements to obtain the synchronous radial spindle error motions. A thorough experimental evaluation is presented to quantify both the repeatability of the measured artifact form errors as well as the bandwidth of error separation for various number of artifact orientations. The spindle error motions measured from both the sphere and stem portions of a custom fabricated sphere-on-stem artifact mounted on a typical miniature UHS spindle, are seen to be similar in shape and within 5 nm in magnitude across the revolution, thus demonstrating the effectiveness of the technique. Using this technique, spindle error motions at ultra-high speeds up to 150 krpm were successfully quantified. Although the implementation scheme is demonstrated for miniature UHS spindles, it is readily applicable for error separation on macro-scale spindles without the need for any high-precision fixtures and precise setting of angles.  相似文献   

13.
针对传统光学位移测量方法对环境要求高和制造精度难以提高等问题,提出了一种以交变光场为测量媒介的新型线性位移检测方法。基于提出的方法,设计了一种光强正交调制型位移传感器。该方法采用基于光强正交变化的两路电驻波合成电行波信号,通过对行波信号时间先后的测量实现空间位移的测量。为了深入理解传感器的传感机理,推导了传感器的测量模型,分析了与传感机理相关的关键因素对测量误差的影响。根据测量原理和测量模型的理论分析,研制出传感器原理样机,通过实验测试了各种关键因素对测量误差的影响,并进一步优化设计了传感器结构与参数。实验显示,优化后的传感器在108mm测量范围内的测量精度达到±0.5μm,是一种新的无需精细刻划的位移检测方案。  相似文献   

14.
柱栅传感器是一种新型数字式直线位移传感器。它是在感应同步器的基础上提出来的新型位移传感器,它具有许多优良的电气和机械特性。目前单根柱栅传感器的设计与制作工艺已很成熟,但当单柱栅只能实现短距离的位移测量,然而在实际中长距离的测量必不可少,因此在现有基础上实现多段柱栅的接长来实现长距离测量就显得相当重要。文章主要介绍了柱栅传感器接长方法的设计和实现及由接长所产生的误差的分析和相应处理,从而达到高精度长距离测量的目的。  相似文献   

15.
The fast tool servo (FTS) machining process provides an indispensable solution for machining optical microstructures with sub-micrometer form accuracy and a nanometric surface finish without the need for any subsequent post processing. The error motions in the FTS machining play an important role in the material removal process and surface generation. However, these issues have received relatively little attention. This paper presents a theoretical and experimental analysis of the effect of error motions on surface generation in FTS machining. This is accomplished by the establishment of a model-based simulation system for FTS machining, which is composed of a surface generation model, a tool path generator, and an error model. The major components of the error model include the stroke error of the FTS, the error motion of the machine slide in the feed direction, and the axial motion error of the main spindle. The form error due to the stroke error can be extracted empirically by regional analysis, the slide motion error and the axial motion error of the spindle are obtained by a kinematic model and the analysis of the profile in the circumferential direction in single point diamond turning (SPDT) of a flat surface, respectively. After incorporating the error model in the surface generation model, the model-based simulation system is capable of predicting the surface generation in FTS machining. A series of cutting tests were conducted. The predicted results were compared with the measured results, and hence the performance of the model-based simulation system was verified. The proposed research is helpful for the analysis and diagnosis of motion errors on the surface generation in the FTS machining process, and throws some light on the corresponding compensation and optimization solutions to improve the machining quality.  相似文献   

16.
李兵  孙彬  陈磊  魏翔 《光学精密工程》2015,23(7):1939-1947
以点激光位移传感器(HL-C211BE)为对象,研究它在自由曲面测量中的应用。针对激光位移传感器因测点倾角代入的测量误差,提出了一个可以量化的倾角误差模型。基于直射式点激光三角法原理,分析了激光光路的几何关系,从会聚光斑光能质心发生的偏移推导出倾角误差模型。随后,用高精度激光干涉仪和正弦规对激光位移传感器进行校对实验,并用误差模型对测量结果进行补偿。结果显示,补偿后激光位移传感器的测量精度得到明显提高。对一非球面凸透镜进行了实验测量,得到了自由曲面测点倾角的计算方法,并用倾角误差模型修正了测量数据。实验结果表明,量化的倾角误差模型可以将激光位移传感器的测量误差控制到小于10μm,满足激光位移传感器在自由曲面测量中应用的要求。  相似文献   

17.
一种基于相位光栅干涉微位移传感器的研制   总被引:2,自引:0,他引:2  
高精度微位移传感器是表面计量技术的关键技术之一.文中介绍了一种低成本、高精度的接触式微位移传感器.该传感器采用平行簧片实现精密直线运动,相位透射型正弦衍射光栅作为计量光栅实现高精密的位移测量.文中分析了其测量原理、光学原理、干涉条纹的光电接收以及辨向、细分.理论分析和实验应用结果表明该传感器垂直分辨率可达到nm级,测量量程为2 mm,可以用于微纳米表面形貌和轮廓的测量.  相似文献   

18.
This paper describes a multi-probe scanning system comprising three laser interferometers and one autocollimator to measure a flat bar mirror profile with nanometer accuracy. The laser interferometers probe the surface of the flat bar mirror that is fixed on top of a scanning stage, while the autocollimator simultaneously measures the yaw error of the scanning stage. The flat bar mirror profile and horizontal straightness motion error are reconstructed by an application of simultaneous linear equations and least-squares method. Measurement uncertainties of the flat bar mirror profile were numerically evaluated for different installation distances between the laser interferometers. The average measurement uncertainty was found to be only 10 nm with installation distances of 10 and 21 mm between the first and second, and first and third interferometers, respectively. To validate the simulation results, a prototype system was built using an X–Y linear stage driven by a stepper motor with steps of 1 mm along the X direction. Experiments were conducted with fixed interferometers distances of 10 and 21 mm, as in the simulation, on a flat bar mirror with a profile known to an accuracy of λ = 632.8 nm. The average value of two standard deviations (95%) of the profile calculated over ten experiments was approximately 10 nm. Other results from the experiment showed that the system can also measure the yaw and horizontal straightness motion errors successfully at a high horizontal resolution. Comparing with the results measured by ZYGO's interferometer, our measured data excluding some edge points showed agreement to within approximately 10 nm. Therefore, we concluded that our measurement profile has an accuracy in the nanometer range.  相似文献   

19.
This paper describes the measurement and compensation of error motions of a diamond turning machine for nanofabrication of large sinusoidal metrology grids. The diamond turning machine has a T-base design, which consists of a spindle with its rotation axis along the Z-direction and a cross-slide with its movement direction along the X-direction. A fast-tool-servo (FTS) unit is mounted on the X-slide to generate sinusoidal microstructures on a flat workpiece surface mounted on the spindle. The error motions of the X-slide and the spindle, which introduce Z-directional profile errors (out-of-flatness) on the grid surface, are measured and compensated. The out-of-straightness of the X-slide is measured to be approximately 60 nm over a travel of 80 mm by using the reversal method. It is also confirmed that the out-of-straightness of the X-slide has a 10-nm periodic component with a period of 11 mm corresponding to the diameter of the needles used in the roller bearing of the X-slide. The angular motion of the spindle is measured to be approximately 0.3″ by using an autocollimator, which can cause a 73-nm out-of-flatness over a workpiece 100 mm in diameter. The axial motion of the spindle is measured to be approximately 5 nm, which is the smallest error motion. The out-of-flatness of the workpiece is reduced from 0.27 to 0.12 μm through compensating for the error motions by utilizing the FTS unit based on the measurement results of error motions.  相似文献   

20.
In this paper, an Improved Fourier Five-Sensor (IF5S) measurement method is proposed for separating the straightness and yawing motion errors as well as determining the profile of a linear slide. The previous F5S method [3] used the constant parameters initially to estimate the profile function based on three sensor equations for different angle ranges. The profile estimation and error separation are implemented via an iterative method which can only yield acceptably accurate results with tremendous computational efforts. Here, the improved F5S method applies the least square regression technique instead of the iterative method to estimate the profile functions by using three distinct sets of parameters and different fused sensor data according to the travel of the linear slide. Various errors can then be separated based on the calculated profile function. Simulation results confirm that the IF5S method provides better performance and effectiveness as compared to the previous F5S method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号