首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
A recent study has shown the feasibility of tissue harmonic imaging (THI) using an intravascular ultrasound (IVUS) transducer. This correspondence describes the design, fabrication, and characterization of a THI-optimized piezoelectric transducer with oval aperture of 0.75 mm by 1 mm. The transducer operated at 20 MHz and 40 MHz, and was comprised of a single piezoelectric layer with additional passive layers. The Krimholtz-Leedom-Matthaei (KLM) model was used to iteratively find optimal material properties of the different layers. The transducer characterization showed -6 dB fractional bandwidths of 30% and 25%, and two-way insertion losses of -20 dB and -36 dB, respectively.  相似文献   

2.
Intravascular ultrasound (IVUS) strain imaging of the luminal layer in coronary arteries, coined as IVUS palpography, utilizes conventional radio frequency (RF) signals acquired at 2 different levels of a compressional load. The signals are cross-correlated to obtain the microscopic tissue displacements, which can be directly translated into local strain of the vessel wall. However, (apparent) tissue motion and nonuniform deformation of the vessel wall, due to catheter wiggling, reduce signal correlation and result in invalid strain estimates. Implications of probe motion were studied on the tissue-mimicking phantom. The measured circumferential tissue displacement and level of the speckle decorrelation amounted to 12° and 0.58, respectively, for the catheter displacement of 456 μm. To compensate for the motion artifacts in IVUS palpography, a novel method based on the feature-based scale-space optical flow (OF), and classical block matching (BM) algorithm, were employed. The computed OF vector and BM displacement fields quantify the amount of local tissue misalignment in consecutive frames. Subsequently, the extracted circumferential displacements are used to realign the signals before strain computation. Motion compensation reduces the RF signal decorrelation and increases the number of valid strain estimates. The advantage of applying the motion correction in IVUS palpography was demonstrated in a midscale validation study on 14 in vivo pullbacks. Both methods substantially increase the number of valid strain estimates in the partial and compounded palpograms. Mean relative improvement in the number of valid strain estimates with motion compensation in comparison to one without motion compensation amounts to 28% and 14%, respectively. Implementation of motion compensation methods boosts the diagnostic value of IVUS palpography.  相似文献   

3.
In this paper, intravascular ultrasound (IVUS) images acquired with a 64-element array transducer using a multistatic acquisition scheme are presented. The images are reconstructed from a collection of pulse-echo measurements using a synthetic aperture array imaging technique. The main limitations of IVUS imaging are a poor lateral resolution and elevated grating lobes caused by the imaging geometry. We propose a Synthetic Aperture Focusing Technique (SAFT), which uses a limited number of A-scan signals. The focusing process, which is performed in the Fourier domain, requires far less computation time than conventional delay-and-sum methods. Two different reconstruction kernel functions have been derived and are compared for the processing of experimental data  相似文献   

4.
We have developed a dual-modality biomedical imaging probe utilizing intravascular ultrasound (IVUS) and optical coherence tomography (OCT). It consists of an OCT probe, a miniature ultrasonic transducer and a fixed mirror. The mirror was mounted at the head of the hybrid probe 45° relative to the light and the ultrasound beams to change their propagation directions. The probe was designed to be able to cover a larger area in blood vessel by IVUS and then visualize a specific point at a much finer image resolution using OCT. To demonstrate both its feasibility and potential clinical applications, we used this ultrasound-guide OCT probe to image a rabbit aorta in vitro. The results offer convincing evidence that the complementary natures of these two modalities may yield beneficial results that could not have otherwise been obtained.  相似文献   

5.
The present study characterizes the mechanical properties of polyvinyl alcohol (PVA) cryogel in order to show its utility for intravascular elastography. PVA cryogel becomes harder with an increasing number of freeze-thaw cycles, and Young's modulus and Poisson's ratio are measured for seven samples. Mechanical tests were performed on cylindrical samples with a pressure column and on a hollow cylinder with the calculation of an intravascular elastogram. An image of the Young's modulus was obtained from the elastogram using cylinder geometry properties. Results show the mechanical similitude of PVA cryogel with the biological tissues present in arteries. A good agreement between Young's modulus obtained from pressure column and from elastogram was also observed.  相似文献   

6.
An integrated compliant balloon ultrasound catheter was developed to allow greater deformations in strain imaging with intravascular ultrasound. A 64-element circumferential array was placed inside a compliant silicone balloon catheter to capture real-time, phase-sensitive radio frequency (RF) data during deformation experiments. Strains over 40% could be applied to normal arterial wall tissue with intracatheter pressures as low as 200 kPa (2 atm). Strain images of a hard-soft rubber phantom, thrombus, and fibrotic plaque were produced using the integrated balloon ultrasound catheter. Results show that this catheter can apply large deformations at low pressures and image various vascular pathologies ex vivo. Potentially, it can serve as a multifunctional, intravascular therapeutic device to guide angioplasty and stent deployment.  相似文献   

7.
李霞  陈益良  苏敏 《声学技术》2024,43(1):142-146
血管内超声(Intravascular Ultrasound,IVUS)成像技术可以精确评估血管腔口径、血管壁形态和其他相关血流和血管特性,在冠状动脉疾病的诊断、治疗指导和治疗后的评估中发挥着重要作用。文章设计并制备了一种用于血管内超声成像的高频超声换能器,并对换能器的电学和声学性能进行测试和表征。结果表明,所制备IVUS换能器的中心频率为38.9 MHz,-6 dB相对带宽为56.6%,在谐振频率42.3 MHz处的电阻抗为22.6Ω,在反谐振频率48.2MHz处的电阻抗为56.5Ω,有效机电耦合系数为0.48。使用该换能器进行线仿体成像实验的结果显示,换能器的纵向分辨率为54μm,横向分辨率为209μm。最后,将文中制备的超声换能器与国外同类型换能器进行比较,结果表明,该换能器的性能良好,能够满足血管内超声临床检测需求,未来有望能够突破技术瓶颈,实现国产替代。  相似文献   

8.
Previously, we presented a method of real-time arterial color flow imaging using an intravascular ultrasound (IVUS) imaging system, where real-time RF A-scans were processed with an FIR (finite-impulse response) filter bank to estimate relative blood speed. Although qualitative flow measurements are clinically valuable, realizing the full potential of blood flow imaging requires quantitative flow speed and volume measurements in real time. Unfortunately, the rate of RF echo-to-echo decorrelation is not directly related to scatterer speed in a side-looking IVUS system because the elevational extent of the imaging slice varies with range. Consequently, flow imaging methods using any type of decorrelation processing to estimate blood speed without accounting for spatial variation of the radiation pattern will have estimation errors that prohibit accurate comparison of speed estimates from different depths. The FIR filter bank approach measures the rate of change of the ultrasound signal by estimating the slow-time spectrum of RF echoes. A filter bank of M bandpass filters is applied in parallel to estimate M components of the slow-time DFT (discrete Fourier transform). The relationship between the slow-time spectrum, aperture diffraction pattern, and scatterer speed is derived for a simplified target. Because the ultimate goal of this work is to make quantitative speed measurements, we present a method to map slow time spectral characteristics to a quantitative estimate. Results of the speed estimator are shown for a simulated circumferential catheter array insonifying blood moving uniformly past the array (i.e., plug flow) and blood moving with a parabolic profile (i.e., laminar flow)  相似文献   

9.
Blood noise reduction in intravascular ultrasound imaging   总被引:2,自引:0,他引:2  
Scattering from red blood cells (blood noise) increases significantly as the ultrasound frequency is increased above 10 MHz. This reduces the contrast between the vessel wall and the lumen in intravascular ultrasound imaging which makes it difficult to localize the vessel wall and plaque. A blood noise filter based on beam tilting and digital lateral low pass filtering is described. Beam tilting introduces a Doppler shift from blood which results in a frequency separation of the vessel wall signal and the blood noise. The performance of the filter is investigated by simulations and by in vitro experiments. The filter is found to be effective for blood velocities exceeding approximately 50 cm s-1 at a 20 MHz ultrasound frequency with a beam tilt angle of 10 degrees and a frame rate of 15 f.p.s. By increasing the system frequency to 40 MHz, increase the beam tilt angle to 15 degrees and reduce the frame rate to 10 f.p.s., the filter is effective for blood velocities below 10 cm s-1  相似文献   

10.
A frequency-domain compensation method is presented that is based on the ultrasound holography B-scan (UHB) imaging principle. In an acoustic imaging system, the wavefront-angle-dependent distortions caused by any kind of known inhomogeneous reason can be compensated by this method. It is applied here in the frequency domain using the so-called rear-ranging operation for the longitudinal distortion and the multiplication of phase factors for the lateral distortion. The method is especially suitable for compensating different velocity layers in acoustic imaging systems. The results of both computer simulations and water-tank experiments are promising.  相似文献   

11.
A major problem associated with quantitative ultrasound measurement, particularly in remote applications, is the variability of environmental temperature, affecting the characteristics of the signals received. In this paper, a practical approach to introduce temperature compensation against changes in amplitude of the received signals is presented. For this purpose, a theoretical investigation was first carried out, and based on the general conclusions of this investigation, a temperature correction function applicable to most materials has been developed. The compensated ultrasonic signals can then be used to obtain the characteristic acoustic properties of the material, irrespective of environmental changes in temperature, extending the scope of ultrasonic testing and characterization of materials in situ.  相似文献   

12.
Longitudinal motion during in vivo pullbacks acquisition of intravascular ultrasound (IVUS) sequences is a major artifact for 3-D exploring of coronary arteries. Most current techniques are based on the electrocardiogram (ECG) signal to obtain a gated pullback without longitudinal motion by using specific hardware or the ECG signal itself. We present an image-based approach for cardiac phase retrieval from coronary IVUS sequences without an ECG signal. A signal reflecting cardiac motion is computed by exploring the image intensity local mean evolution. The signal is filtered by a band-pass filter centered at the main cardiac frequency. Phase is retrieved by computing signal extrema. The average frame processing time using our setup is 36 ms. Comparison to manually sampled sequences encourages a deeper study comparing them to ECG signals.  相似文献   

13.
[Pb(Mg(1/3)Nb(2/3))O(3)](0.63)[PbTiO(3)](0.37) (PMN-PT) free-standing film of comparable piezoelectric properties to bulk material with thickness of 30 μm has been fabricated using a modified precursor coating approach. At 1 kHz, the dielectric permittivity and loss were 4364 and 0.033, respectively. The remnant polarization and coercive field were 28 μC/cm(2) and 18.43 kV/cm. The electromechanical coupling coefficient k(t) was measured to be 0.55, which was close to that of bulk PMN-PT single-crystal material. Based on this film, high-frequency (82 MHz) miniature ultrasonic transducers were fabricated with 65% bandwidth and 23 dB insertion loss. Axial and lateral resolutions were determined to be as high as 35 and 176 μm. In vitro intravascular imaging on healthy rabbit aorta was performed using the thin film transducers. In comparison with a 35-MHz IVUS transducer, the 80-MHz transducer showed superior resolution and contrast with satisfactory penetration depth. The imaging results suggest that PMN-PT free-standing thin film technology is a feasible and efficient way to fabricate very-high-frequency ultrasonic transducers.  相似文献   

14.
Intravascular ultrasound (IVUS) imaging systems using circumferential arrays mounted on cardiac catheter tips fire beams orthogonal to the principal axis of the catheter. The system produces high resolution cross-sectional images but must be guided by conventional angioscopy. A real-time forward-viewing array, integrated into the same catheter, could greatly reduce radiation exposure by decreasing angiographic guidance. Unfortunately, the mounting requirement of a catheter guide wire prohibits a full-disk imaging aperture. Given only an annulus of array elements, prior theoretical investigations have only considered a circular ring of point transceivers and focusing strategies using all elements in the highly dense array, both impractical assumptions. In this paper, we consider a practical array geometry and signal processing architecture for a forward-viewing IVUS system. Our specific design uses a total of 210 transceiver firings with synthetic reconstruction for a given 3-D image frame. Simulation results demonstrate this design can achieve side-lobes under -40 dB for on-axis situations and under -30 dB for steering to the edge of a 60/spl deg/ cone.  相似文献   

15.
There has been rapid progress in the application of wavelet transforms to image and image sequence compression. The standard discrete wavelet transform lacks transition invariance in image decomposition which will affect the accuracy of motion estimation from the decomposed subimages in video coding. In this article, we present a study of applying an almost shift-invariant wavelet transform with “oversampled frames” to image sequence compression. With minimal oversampling and biorthogonal spline wavelets in the almost shift-invariant wavelet transform, motion vectors can be more accurately estimated, contributing toward fewer prediction errors in comparison to those obtained with the standard discrete wavelet transform. Thus, an improved compression ratio can be obtained. We present two new algorithms, the full-motion oversampling algorithm (FMOS) and the reduced search multiresolution motion estimation algorithm (MRME), for estimating motion fields at different scales and in different subimages. In the latter, motion vectors at a higher resolution are approximated by the motion vector estimates at a lower resolution through proper scaling. Experiments were performed on three video sequences with a variety of motions including slow, fast, and zooming. Our results have shown that both algorithms, FMOS and MRME, using the almost shift-invariant oversampled frame wavelet transform have reduced prediction errors and enhanced the compression performance in terms of peak-signal-to-noise ratio (PSNR) for the same bit rate when compared to the existing full motion standard algorithm. © 1998 John Wiley & Sons, Inc. Int J Imaging Syst Technol, 9, 214–229, 1998  相似文献   

16.
Forward-viewing ring arrays can enable new applications in intravascular and intracardiac ultrasound. This work presents compelling, full-synthetic, phased-array volumetric images from a forward-viewing capacitive micromachined ultrasonic transducer (CMUT) ring array wire bonded to a custom integrated circuit front end. The CMUT ring array has a diameter of 2 mm and 64 elements each 100 microm x 100 microm in size. In conventional mode, echo signals received from a plane reflector at 5 mm had 70% fractional bandwidth around a center frequency of 8.3 MHz. In collapse mode, 69% fractional bandwidth is measured around 19 MHz. Measured signal-to-noise ratio (SNR) of the echo averaged 16 times was 29 dB for conventional operation and 35 dB for collapse mode. B-scans were generated of a target consisting of steel wires 0.3 mm in diameter to determine resolution performance. The 6 dB axial and lateral resolutions for the B-scan of the wire target are 189 microm and 0.112 radians for 8 MHz, and 78 microm and 0.051 radians for 19 MHz. A reduced firing set suitable for real-time, intravascular applications was generated and shown to produce acceptable images. Rendered three-dimensional (3-D) images of a Palmaz-Schatz stent also are shown, demonstrating that the imaging quality is sufficient for practical applications.  相似文献   

17.
We report an integrated ultrasound (US) and optical coherence tomography (OCT) probe and system for intravascular imaging. The dual-function probe is based on a 50 MHz focused ring US transducer, with a centric hole for mounting OCT probe. The coaxial US and light beams are steered by a 45° mirror to enable coregistered US∕OCT imaging simultaneously. Lateral resolution of US is improved due to focused ultrasonic beam. Mirror effects on US were investigated and invitro imaging of a rabbit aorta has been carried out. The combined US-OCT system demonstrated high resolution in visualizing superficial arterial structures while retaining deep penetration of ultrasonic imaging.  相似文献   

18.
This article presents a robust motion estimation and correction technique for the realization of synthetic‐aperture side‐scan sonar imaging. It utilizes the redundancy provided by the multiple‐element receiver array configuration. Physical‐array subimages are used for the estimation of the motion errors between adjacent receiver positions. Subsequently, the motion errors are formulated in the form of phase perturbations and are corrected accordingly by making adjustments to the wave‐field data samples prior to the formation of synthetic‐aperture images. © 2005 Wiley Periodicals, Inc. Int J Imaging Syst Technol, 14, 259–261, 2004; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/ima.20029  相似文献   

19.
Previously, we showed a source of error in blood flow estimation introduced by in-plane flow using a slow-time finite-impulse response (FIR) filter-bank method measuring blood flow through the image plane of an intravascular ultrasound (IVUS) catheter array. There is a monotonic relationship between flow velocity and the normalized second moment of the slow-time spectrum when flow is orthogonal to the image plane of a side-looking catheter array. However, this relationship changes in the presence of in-plane flow, as slow-time spectra shift and spread with varying in-plane and out-of-plane components. These two effects increase the normalized spectral second moment, resulting in flow overestimates. However, by resampling the received signal with variable time delay from pulse to pulse (i.e., tilting the slow-time signals), the slow-time spectrum shifts back to direct current (DC), and the orthogonal estimation method can be used. We present a method to correct this overestimation and accurately estimate blood flow through the image plane in real time. Initially, the tilt delay needed to shift the slow-time spectrum back to DC at each point within the flow field is calculated. Knowing this tilt delay, a tilted slow-time signal is obtained for the velocity component normal to the image plane, and its spectrum is estimated using a filter-bank. That spectrum then is used to estimate the flow speed using a mapping function closely related to the monotonic relationship between the slow-time spectrum and flow speed observed for orthogonal flow. To accurately estimate flow angles, we modified the filter-bank algorithm, applying slow-time filter coefficients in a tilted arrangement and studying the slow-time spectral energy as a function of tilt. The slow-time spectral estimate is constructed with the tilted output of eight narrow, band-pass filters from a filter-bank. Independent simulations show that, for blood slowing at angles between +/-6 degrees and +/-15 degrees at a speed of 300 mm/s, flow velocity would be overestimated by as much as 38.79% and 249%, respectively, using the direct filter-bank approach. However, this error can be corrected using the modified method presented here, reducing the maximum overestimation error by a factor of 2.69 and 10.88 for those angles, respectively. Although the remaining error is not negligible, the volume flow rate, calculated by integrating the flow velocity over the entire vessel lumen, differs by only 3% or less from the true value over the angular range considered here. This represents an improvement of a factor of 40 over uncompensated estimates at maximum flow angles. Consequently, the modified real-time method can quantitatively measure flow in most IVUS applications in which the catheter's image plane is not precisely orthogonal to the flow direction.  相似文献   

20.
Autoregressive (AR) models are qualified for analysis of stochastic, short-time data, such as intravascular ultrasound (IVUS) backscatter. Regularization is required for AR analysis of short data lengths with an aim to increase spatial accuracy of predicted plaque composition and was achieved by determining suitable AR orders for short data records. Conventional methods of determining order were compared to the use of trend in the mean square error for determining order. Radio-frequency data from 101 fibrous, 56 fibro-lipidic, 50 calcified, and 70 lipid-core regions of interest (ROIs) were collected ex vivo from 51 human coronary arteries with 30 MHz unfocused IVUS transducers. Spectra were computed for AR model orders between 3-20 for data representing ROIs of two sizes (32 and 16 samples at 100 MHz sampling frequency) and were analyzed in the 17-42 MHz bandwidth. These spectra were characterized based on eight previously identified parameters. Statistical classification schemes were computed from 75% of the data and cross-validated with the remaining 25% using matched histology. The results determined the suitable AR order numbers for the two ROI sizes. Conventional methods of determining order did not perform well. Trend in the mean square error was identified as the most suitable factor for regularization of short record lengths.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号