首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
美国典型炼油厂的汽油主要由轻直馏汽油、焦化轻汽油、烷基化油、重整生成油、FCC汽油和MTBE(趋于减少)组成。其中,FCC汽油约占总量的1/3,但其占汽油总组成硫含量的80%~95%,降低FCC汽油硫含量是重中之重。另外,焦化轻汽油降硫费用最高,因其硫和烯烃含量高,导致加氢处理时氢耗高和辛烷值损失大,大多将其送往焦化石脑油加氢处理装置,产品分馏成C5物流和催化重整进料物流。另一利用方案是将C5用作FCC进料。  相似文献   

2.
电位滴定法分析催化裂化汽油中类型硫含量   总被引:1,自引:0,他引:1  
对已有催化裂化汽油中类型硫分析方法进行了改进,提出以电位滴定仪为主要分析仪器的汽油中类型硫的分析方法。利用该方法对3座不同炼油厂生产的催化裂化汽油中的类型硫进行了分析。结果表明,硫醇硫和二硫化物硫含量最低,硫醚硫含量中等,噻吩硫含量最高(占总硫质量分数的70%以上),后两者之和占总硫质量分数的90%左右。  相似文献   

3.
硫化氢对催化裂化汽油重馏分加氢脱硫性能的影响   总被引:6,自引:0,他引:6  
考察了循环氢中硫化氢含量对催化裂化汽油重馏分(HCN)加氢脱硫性能的影响和HCN加氢产物的无碱脱臭处理效果。结果表明,H2S严重抑制HCN加氢脱硫深度和脱硫醇硫深度,也抑制烯烃加氢饱和反应。GC—AED分析结果表明,在260℃低温和循环氢中Hzs含量为1700μg/g的条件下,与原料相比,产物中C7硫醇硫含量增加46.6%。无碱脱臭处理重馏分加氢脱硫产物时,硫醇硫含量可由113.0μg/g降低到4.9μg/g,能够满足成品汽油硫醇硫含量不大于10μg/g的要求。如果控制HCN加氢脱硫单元的加氢脱硫率不小于93%,循环氢中H2S含量应该不大于680μg/g。  相似文献   

4.
OCT-M加氢汽油硫醇硫含量影响因素分析   总被引:1,自引:0,他引:1  
对影响OCT-M加氢汽油硫醇硫含量的因素进行分析,认为加氢反应温度和循环氢中硫化氢浓度是主要影响因素.控制反应器上床层出口温度265~270℃、下床层出口温度310~315℃、循环氢脱硫再生温度118~122℃,可降低加氢汽油硫醇硫含量,确保产品汽油中的硫醇硫质量分数小于10μg/g.  相似文献   

5.
国内汽油选择性加氢脱硫技术进展   总被引:1,自引:0,他引:1  
典型炼油厂的汽油主要由轻直馏汽油、焦化轻汽油、烷基化油、重整生成油、FCC汽油和MTBE(趋于减少)组成。汽油总组成中,含硫最高的物流是催化裂化(FCC)汽油,占汽油总组成硫含量的98%,为此,降低FCC装置汽油的硫含量是降低汽油总组成含硫量的关键之一。另外,焦化轻汽油降硫费用最高,因其高含硫和含烯烃,导致加氢处理时高氢耗和辛烷值损失大。大多将其送往焦化石脑油加氢处理装置,产品分馏成C5物流和催化重整进料物流。另一利用方案是将c。用作FCC进料。  相似文献   

6.
建立了低硫汽油中含硫化合物类型分布的气相色谱-硫化学发光检测器(GC-SCD)的分析方法。优化了色谱条件,提高了方法对硫化物的分析灵敏度,对汽油中硫的检出限达到0.05 mg/L。考察了重复性,对于硫含量分别为1,5,10 mg/L的汽油样品重复测定5次,重现性良好,相对标准偏差小于1%。在此基础上,分析了选择性加氢脱硫(RSDS)工艺和吸附脱硫(S Zorb)工艺产品汽油中含硫化合物的类型分布,并探讨了不同硫含量中汽油硫类型的分布规律。该方法可应用于不同来源的低硫汽油中各种硫化物类型分布的研究。  相似文献   

7.
《石油知识》2013,(6):40-40
加氢脱硫技术。由于FCC汽油是汽油的主要成分,也是汽油中硫的主要来源(占86%以上)。因此,降低汽油硫含量的关键是降低FCC汽油的硫含量。目前选择性加氢脱硫、较少降低辛烷值的加氢技术有4种。  相似文献   

8.
焦化汽油加氢催化剂床层结垢机理分析   总被引:10,自引:0,他引:10  
采用元素分析、红外光谱分析、热重分析以及灰分测定等方法对抚顺石化公司石油一厂焦化汽油加氢装置催化剂床层结垢进行了分析。垢的主要成分为烯烃聚合物 ,结垢机理为非烃化合物引发的聚合反应 ,次要成分为H2 S及硫醇腐蚀设备而生成的铁的硫化物及其它金属化合物。原料焦化汽油储存时间过长是诱发二烯烃聚合结垢严重的根本原因。经过储存后的焦化汽油不适合作为加氢原料。  相似文献   

9.
采用化学萃取法结合GC/双火焰光度检测器技术,研究了碱洗、固定床脱臭和液-液脱臭等脱硫醇工艺中加氢精制重汽油中硫醇类型的变化规律。实验结果表明,加氢精制重汽油中硫醇以C6及C6以上硫醇为主,C6及C6以上硫醇硫质量占总硫醇硫质量的92.1%;碱洗前后加氢精制重汽油中硫醇的种类相同,但各硫醇单体的相对含量发生变化,碱洗后正戊硫醇和正己硫醇的相对含量降低,而C6异构硫醇及C6以上硫醇的相对含量增加;采用不同脱臭工艺或不同深度脱臭处理后,加氢精制重汽油中的硫醇都以苯硫酚和C7及C7以上硫醇为主,苯硫酚和C7及C7以上硫醇硫的质量占总硫醇硫质量的81%~91%,表明大分子硫醇的脱除较为困难,脱臭过程中大分子硫醇的脱除是关键。  相似文献   

10.
催化裂化汽油中硫和族组成及硫化物类型的馏分分布   总被引:13,自引:0,他引:13  
分别对山东石大科技集团公司胜华教学实验厂和中国石油化工股份有限公司齐鲁分公司胜利炼油厂的催化裂化(FCC)汽油进行了实沸点切割,测定了各窄馏分的硫含量、族组成和硫化物类型分布。结果表明,FCC汽油中的硫含量随馏分沸点的升高而增加,两种FCC汽油具有相似的硫化物含量分布,其中噻吩硫占50%~60%,二硫化物占5%~6%,硫醚占25%~30%,硫醇占10%~13%。硫醚和硫醇主要集中在小于100℃的馏分中,二硫化物主要集中在70~100℃的馏分中,噻吩主要集中在大于100℃的馏分中。FCC汽油的烯烃含量随馏分沸点的升高而减少,烷烃和烯烃主要集中在小于85℃的馏分中,芳烃主要集中在大于145℃的馏分中,环烷烃的分布比较均匀。FCC汽油中的辛烷值分布呈现两头高中间低的趋势。  相似文献   

11.
分析了FCC汽油不同切割馏分的硫形态分布,对比重汽油馏分选择性加氢脱硫反应前后的硫形态分布变化,并考察了反应温度对加氢汽油中硫形态分布的影响。结果表明:FCC汽油中的硫主要分布在高沸点馏分中,且主要为C2~C4噻吩和苯并噻吩类;加氢反应后,汽油中的硫醇、四氢噻吩、苯并噻吩较易脱除,2-甲基噻吩和C2噻吩较难脱除;反应温度对FCC重汽油加氢产物硫形态的分布具有重要的影响,温度高于265 ℃时,汽油脱硫率达到99%,加氢汽油中仅有少量的2-甲基噻吩和C2噻吩未被脱除,温度低于265 ℃时,汽油中硫化物的脱除率较低,并随反应温度的升高而增加。  相似文献   

12.
对焦化柴油进行等体积蒸馏切割并对各馏分段油品的碱性氮含量、硫醇硫含量和酸值进行测定。结果表明,在焦化柴油蒸馏切割后的各馏分段中,碱性氮含量随馏程温度的升高而增加,但硫醇硫含量随馏程温度的升高而降低。通过气相色谱-质谱联用技术对焦化柴油中的酸性物质进行定性分析,发现酸性物质均为苯酚类化合物,并且绝大部分苯酚类物质的沸点小于257℃。因此,焦化柴油的碱性氮化物绝大多数存在于高沸点重组分中,而硫醇硫和酚类化合物则集中在低沸点较轻组分中。  相似文献   

13.
采用连续抽提-氧化过程模拟汽油纤维液膜脱硫醇工艺,研究了汽油纤维液膜脱硫醇过程中硫化氢中的硫离子(S2-)和硫醇中的硫醇离子(C3H7S-)的转化率规律及S2-氧化产物的分布情况;通过汽油铜片腐蚀实验考察了催化剂碱液氧化再生过程中生成的单质S对汽油腐蚀性能的影响,并对S2-深度氧化条件进行了探讨。实验结果表明,S2-的转化率随抽提-氧化次数的增加和汽油中C3H7S-含量的增加而降低,C3H7S-的转化率随抽提-氧化次数的增加而降低;在四磺化酞菁钴含量为100μg/g、w(NaOH)=10%、抽提温度30℃、抽提时间20m in、氧化温度30℃、氧化时间20m in、搅拌转速1 200r/m in、空气流量56mL/m in的条件下,S2-的主要氧化产物为单质S和S2O32-;催化剂碱液中的部分单质S会溶解在汽油中,造成汽油的铜片腐蚀程度加剧;在抽提-氧化过程中,升高氧化温度、延长氧化时间,有利于S2-深度氧化为S2O32-。  相似文献   

14.
基于车用汽油质量标准中涉及硫含量、腐蚀性标准的更新,结合硫分布规律和汽油加工生产、调合工艺,分析了车用汽油硫含量测定试验方法变化的原因及发展方向、硫含量与硫醇硫含量间的相互关系,探讨了硫醇分子中-SH结构、汽油组成、添加剂等影响检测化学环境的因素对博士试验检出限量的影响规律,指出不同结构硫醇中-SH化学活性差异是博士试验与铜片腐蚀试验不统一的原因,综合反映实际腐蚀作用的铜片腐蚀试验可全面、客观表征汽油腐蚀性能。控制硫含量、铜片腐蚀即可同时满足燃烧SOx排放和腐蚀性要求。  相似文献   

15.
在加工过程中 ,原油中的大部分硫将进入催化裂化等二次加工装置 ,产生多种含硫的腐蚀介质 ,形成多种腐蚀类型。管混原油中的硫主要以硫化氢、单质硫、硫醇、硫醚、二硫化物和噻吩等形态存在。加工过程中 ,硫化物主要分布在减压蜡油 (占 16 .15 %)和渣油中 (占 77.16 %) ;催化反应后 ,原料中硫的 5 .0 1%进入再生烟气 ,43.72 %进入干气、液化气 ,5 .5 3%进入汽油 ,2 9.10 %进入柴油 ,10 .96 %进入油浆中 ;加氢原料反应后 ,有 14.35 %的硫残存于精制柴油中。文章对加工过程中的腐蚀问题进行了分析 ,提出了相应的对策。  相似文献   

16.
辽河田杜—84稠油加工方案初探   总被引:3,自引:0,他引:3  
根据辽河田杜-84稠油密度大、轻馏分少、粘度大、硫含量低的特点,对悬浮床加氢-延迟焦化、ROP工艺-加氢处理-渣油催化裂化、延迟焦化三种加工方案进行了技术经济对比,认为采用延迟焦化方案加工流程短,可得到68.2%的液体产品,汽、柴油经加氢精制后产品性质符合产品规格要求,焦炭可作为普通焦产品出厂。  相似文献   

17.
采用纤维膜氧化萃取-光催化氧化组合超深度脱硫工艺对催化裂化汽油(FCC汽油)进行精制,考察了操作条件对FCC汽油中硫醇硫、硫醚硫、噻吩硫脱除率的影响。实验结果表明,萃取操作的适宜条件为常压、萃取温度30℃、剂油体积比1:1.5;光催化氧化操作的适宜条件为反应温度30~40℃、反应时间1h。在以上操作条件下,精制油中的硫含量为8.7μg/g,达到欧V排放标准对汽油硫含量的要求,油收率超过95%。  相似文献   

18.
1 PrefaceInordertoreducetheemissionofharmfulexhaustedgasandtinyparticlesfromvehicles,morestringentregulationfortransportationfueliscomingintoeffectinmanycountriesandareas(seeTable 1and 2 ) .ItcanbeseenfromtheTablesthatlessandlesssulfurandolefincontentsing…  相似文献   

19.
介绍了青岛石化有限责任公司(简称青岛石化)采用RIPP的调控技术(RSAT)生产的选择性加氢脱硫催化后生产满足国Ⅴ排放标准汽油的关键工艺参数的控制方案,包括关键指标轻、重汽油分馏单元切割点的选择以及分馏精度的控制、轻汽油碱抽提脱硫醇单元各参数的控制及轻汽油碱抽提脱硫醇后硫含量的控制、重汽油加氢脱硫单元各参数的控制及加氢后重汽油硫含量的控制。针对青岛石化催化裂化汽油,轻、重汽油切割点以50~60 ℃,质量比约1:4为宜;轻汽油碱抽提脱硫醇单元要求其中硫醇硫基本被全部抽提,控制加氢后重汽油硫质量分数小于10 μg/g且与碱抽提后轻汽油混合后全馏 分汽油产品硫质量分数小于10 μg/g。结果表明,采用RSAT生产的选择性加氢脱硫催化剂及对各单元产品质量要求和参数进行优化和精心控制,实现了满足国Ⅴ排放标准汽油的生产。可将硫质量分数从原料的700~853 μg/g降至8~9 μg/g时,产品辛烷值损失1.4~1.5个单位。国Ⅴ排放标准汽油的生产成功,为下一步全面采用RSDS-III技术并长期稳定生产满足国Ⅴ排放标准汽油打下了基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号