首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 205 毫秒
1.
直流溅射工艺参数对Mo薄膜结构及电性能的影响   总被引:1,自引:0,他引:1  
黄涛  闫勇  黄稳  张艳霞  晏传鹏  刘连  张勇  赵勇  余洲 《功能材料》2012,43(4):499-503
采用直流磁控溅射法在SLG衬底上沉积Mo薄膜,对不同溅射功率和溅射工作气压下沉积的薄膜进行X射线衍射、SEM(扫描电子显微镜)、电阻率测试,讨论了工艺参数对沉积Mo薄膜相结构、表面微观形貌、薄膜沉积速率和电学性能的影响。结果表明,随着溅射功率的增加,薄膜的结晶性能变好,沉积速率提高,在沉积功率范围内薄膜均匀致密,表面无空隙,电阻率较低;随着溅射工作气压增加,薄膜结晶性能变差,沉积速率先增加后降低,在沉积工作气压范围内,薄膜致密;随气压降低,电阻率急剧减小。因此,较高的溅射功率和较低的工作气压沉积的Mo薄膜更适合作CIGS薄膜太阳电池的BC层(背接触层)。  相似文献   

2.
采用直流磁控溅射法在玻璃基片上沉积ZnO:Al(AZO)薄膜,溅射气压为0.2~2.2 Pa.通过X射线衍射(XRD)、扫描电子显微镜(SEM)、四探针和紫外–可见分光光度计对AZO薄膜的相结构、微观形貌和电光学性质进行了表征.结果表明:薄膜的沉积速率随着溅射气压的增大而减小,变化曲线符合Keller-Simmons模型;薄膜均为六角纤锌矿结构,但择优取向随着溅射气压发生改变;溅射气压对薄膜的表面形貌有显著影响;当溅射气压为1.4 Pa时,薄膜有最低的电阻率(8.4×104 Ω·cm),高的透过率和最高的品质因子Q.  相似文献   

3.
利用射频磁控溅射法,采用氧化锌铝(98%ZnO+2%Al2O3)为靶材,在普通载玻片上制备了ZAO(ZnO∶Al)薄膜,研究了溅射功率及溅射气压对薄膜晶体结构、电学和光学性能的影响.采用X射线衍射仪、场扫描电镜对薄膜的结构及表面形貌进行了分析,采用分光光度计和电阻率测试仪对薄膜的光电学性能进行了测试.结果表明,当溅射功率为120W、衬底温度为300℃、工作气压为0.5Pa时制得的薄膜具有良好的光电学性能,可见光平均透过率为88.21%,电阻率为8.28×10-4Ω·cm.  相似文献   

4.
用脉冲磁控溅射法在柔性衬底聚对苯二甲酸乙二醇酯(PET)上制备了氧化铟锡(ITO)透明导电薄膜,研究了溅射气压、时间和衬底温度等工艺条件对ITO薄膜光电性能的影响,并采用X射线衍射仪(XRD)、扫描电镜(SEM)对薄膜的物相结构与表面形貌进行了分析。结果表明:薄膜的平均晶粒尺寸随衬底温度的升高而增大;当溅射时间增加时,方块电阻与光透过率均减小;当衬底温度升高时,方块电阻减小,可见光透过率增大。  相似文献   

5.
磁控溅射法制备低电阻率Ta薄膜研究   总被引:1,自引:0,他引:1  
邵花  王文东  刘训春  夏洋 《功能材料》2013,(18):2625-2629
在无匹配层、常温、溅射气体为纯Ar的条件下,利用直流磁控溅射法在Si表面制备了Ta薄膜,系统研究了工作气压及直流功率对薄膜电阻率及微观结构的影响。分别用四探针测试仪、X射线衍射仪、原子力显微镜对不同条件下制备的Ta薄膜电阻率、相结构及表面形貌进行表征。结果发现,随溅射气压升高,高阻β相出现,薄膜电阻率随之增大;在相同溅射气压下,随着溅射功率的增加,薄膜电阻率先降低后升高。优化溅射工艺后制得的Ta薄膜的电阻率低至29.7μΩ·cm。  相似文献   

6.
采用磁控反应溅射方法,在Si(100)衬底上沉积c-BN薄膜,研究了溅射气压和沉积时间对薄膜结构的影响。结果表明,随溅射气压的升高或沉积时间的增加,都是削弱荷能粒子对衬底表面的轰击效果,并导致薄膜中c-BN相含量的减小。  相似文献   

7.
采用射频磁控溅射法在Si(100)衬底上沉积了Ba0.65Sr0.35TiO3薄膜.借助XRD、AFM和SEM研究了衬底温度、退火温度、溅射气压等不同的溅射参数对Ba0.65Sr0.35TiO3薄膜的晶化行为和显微结构的影响.在室温下沉积并未经退火处理的Ba0.65Sr0.35TiO3 薄膜是无定形态,在较高温度下沉积的薄膜晶化相对较好;随着在氧气气氛中退火温度的升高,X射线衍射峰的半峰宽变窄,衍射峰强度增强;在0.37~1.2Pa气压下沉积的Ba0.65Sr0.35TiO3薄膜有(110)和(200)主衍射峰,且其强度随溅射气压的增加而增强;当溅射气压继续升到3.9Pa,(110)和(200)衍射峰明显增强,说明Ba0.65Sr0.35TiO3 薄膜具有(110) (200)择优取向.AFM和SEM结果显示薄膜晶粒细小均匀、结构致密、表面平整,且无裂纹、无孔洞.分析结果显示优化工艺参数制备的Ba0.65Sr0.35TiO3 薄膜是用以制备非致冷红外探测器的优质材料.  相似文献   

8.
采用直流磁控溅射法在SLG衬底上沉积Mo薄膜,并用XRD、SEM、四探针等对薄膜进行表征,研究了沉积时间对薄膜晶体结构、表面形貌以及电学性能的影响。研究发现,沉积时间能够调节Mo薄膜的择优取向。溅射时间较短(5~10min)时,沉积的Mo薄膜呈(110)择优取向。溅射时间超过15min后,薄膜呈现(211)取向,且(211)晶面择优程度随沉积时间的增加而提高。随着择优取向的改变,薄膜的表面形貌由三角形颗粒变为长条形颗粒,电阻率也发生相应变化,由3.92×10-5Ω·cm增加到4.27×10-5Ω·cm再降低,对应薄膜生长的晶带模型由晶带T型组织变为晶带2组织。  相似文献   

9.
在玻璃衬底上利用磁控溅射法制备AZO/Cu/AZO多层薄膜,研究了溅射功率对AZO薄膜的微观结构和光电性能的影响。采用X射线衍射(XRD)仪、扫描电子显微镜(SEM)、紫外可见光谱仪(UVVis)等方法,对AZO薄膜的形貌结构、光电学性能进行了测试。结果表明:不同溅射功率下沉积的AZO薄膜均呈C轴择优取向,溅射功率对AZO/cu/AZO多层薄膜结构与光电性能有一定的影响。在溅射功率为120W、衬底温度为2500C、溅射气压为0.5Pa时薄膜的光透过率为75%,最低电阻率为2.2×10-4Ω·cm、结晶质量、表面形貌等得到明显改善。  相似文献   

10.
反应磁控溅射制备氮化钽扩散阻挡层的研究   总被引:1,自引:0,他引:1  
采用反应磁控溅射在硅衬底上制备了TaN薄膜,研究了氮分压、溅射功率及衬底温度对薄膜晶体结构、表面形貌和电学性能的影响。结果表明,晶体结构随工艺参数的改变发生变化,GIXRD图谱衍射峰强度随溅射功率和衬底温度的增加而增强,氮气分压的增加使择优取向向(111)晶面偏移;TaN薄膜的表面形貌与溅射功率和氮气分压密切相关,与衬底温度的关系不大,其粗糙度随溅射功率的增加而增大,随氮气分压的增加而减小;TaN薄膜的方块电阻随溅射功率的增加逐渐减小,随氮气分压的增加逐渐增大,温度对方块电阻的影响不大;对Cu/TaN/Si互联体系热处理后发现TaN薄膜具有优异的阻挡性能,在600℃时依然可有效阻止Cu向Si的扩散。  相似文献   

11.
《Thin solid films》1986,135(2):219-228
Tin-doped indium oxide (ITO) films were prepared by d.c. magnetron sputtering of an In-Sn alloy target, and the influence of the sputtering gas atmosphere and substrate temperature on their electrical properties was studied.The conditions for the deposition of the transparent ITO films were divided into three regions by varying the sputtering gas pressure. The first region was characterized by a high efficiency of oxygen gas consumption for film formation and a high deposition rate. In the second region the as-deposited films contained slightly less than the stoichiometric amount of oxygen. The third region was characterized by a low efficiency of oxygen consumption and a low deposition rate. The ratio of the amount of oxygen consumed to the amount of oxygen admitted to the sputtering chamber was about 15% when films with resistivities as low as 6 × 10-4Ω cm were prepared at the optimum oxygen partial pressure.In the case of metallic deposited in an oxygen-poor atmosphere the carrier mobility, which mainly depends on the crystal structure, increased and the carrier concentration, which depends on the number of oxygen vacancies and donor centres, decreased with increasing substrate temperature. The opposite results were obtained for films deposited in an oxygen-rich atmosphere. Well-defined grain growth was observed, particularly for metallic films deposited at high substrate temperatures, and this caused the low carrier mobility.Subsequent heat treatment improved the resistivity of films deposited at substrate temperatures below 100°C, mainly because of the increase in carrier mobility, but it had little effect on the resistivity of films deposited at substrate temperatures above 150 °C because the increase in carrier mobility was cancelled by the decrease in carrier concentration.  相似文献   

12.
Pure nickel thin films were deposited on Si (100) substrates under different conditions of sputtering using direct current magnetron sputtering from a nickel metal target. The different deposition parameters employed for this study are target power, argon gas pressure, substrate temperature and substrate-bias voltage. The films exhibited high density of void boundaries with reduction in <111> texture deposited under high argon gas pressures. At argon gas pressure of 5 mTorr and target power of 300 W, Ni deposition rate was ~40 nm/min. In addition, coalescence of grains accompanied with increase in the film texture was observed at high DC power. Ni films undergo morphological transition from continuous, dense void boundaries to microstructure free from voids as the substrate-bias voltage was increased from −10 to −90 V. Furthermore, as the substrate temperature was increased, the films revealed strong <111> fiber texture accompanied with near-equiaxed grain structure. Ni films deposited at 770 K showed the layer-by-layer film formation which lead to dense, continuous microstructure with increase in the grain size.  相似文献   

13.
Can hydrogen trapped within the lattice of copper film produce irreversible effects on the electrical resistivities of copper film at room temperature? In order to answer this question, copper films were sputtered in the presence of hydrogen and resistivities were measured in vacuum at room temperature. A series of sputtering depositions were carried out at different hydrogen partial pressures to confirm irreversible hydrogen effects. Films sputtered in argon only, were used as controls. The electrical resistivities of copper films were measured as a function of hydrogen partial pressure. Saturation is reached for the electrical resistivity in high hydrogen partial pressures. The saturation is at around 5.0% hydrogen partial pressure of total sputtering pressure. The electrical resistivities of copper films are lowered irreversibly by hydrogen, because the films were sputtered in the gas mixtures of argon and hydrogen and the electrical resistivities of films were measured in the air. The sputtering rate decreases as the hydrogen partial pressure increases. The sputtering rate is found to be proportional to the average mass of the incident ion.  相似文献   

14.
Ba0.65Sr0.35TiO3 (BST) thin films have been deposited by radio frequency magnetron sputtering. The effects of the deposition parameters on the crystallization and microstructure of BST thin films were investigated by X-ray diffraction and field emission scanning electron microscopy, respectively. The crystallization behavior of these films was apparently affected by the substrate temperature, annealing temperature and sputtering pressure. The as-deposited thin films at room temperature were amorphous. However, the improved crystallization is observed for BST thin films deposited at higher temperature. As the annealing temperature increased, the dominant X-ray diffraction peaks became sharper and more intense. The dominant diffraction peaks increased with the sputtering pressures increasing as the films deposited at 0.37–1.2 Pa. With increasing the sputtering pressure up to 3.9 Pa, BST thin films had the (110) + (200) preferred orientation. Possible correlations of the crystallization with changes in the sputtering pressure were discussed. The SEM morphologies indicated the film was small grains, smooth, and the interface between the film and the substrate was sharp and clear.  相似文献   

15.
ZnO thin films have been deposited on GaN and ZnO substrates at substrate temperatures up to 750 °C by radio-frequency sputtering using ZnO ceramic targets in pure argon or in a mixture of argon and oxygen. By optimizing the sputter parameters, such as sputtering power, Ar/O2 sputtering gas ratio and temperature of the substrates high quality films were obtained as judged from the X-ray rocking curve half width and luminescence line width. The crystallinity of the ZnO films increases with increasing substrate temperature. Yet there are distinct differences between films grown on GaN templates and on O- and Zn-polar ZnO substrates.  相似文献   

16.
Chromium nitride (CrN) thin films were deposited on stainless steel (grade: SA304) substrate by using d.c. reactive magnetron sputtering and the influence of process parameters such as substrate temperature, pressure, and power on their microstructural characteristics were investigated in the present work. The CrN films were characterized with X-ray diffraction (XRD) to reveal the formation of different phases and its texture. The films showed the (111) preferred orientation but its intensity decreased, while intensity of peak (200) increased with increase in working pressure. The mixture of CrN and Cr2N phases were identified at low working pressure and temperature. The preferred orientations of CrN thin films are strongly influenced by sputtering conditions, thickness, and the induced residual stress in the films as observed in the present work. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to characterize the morphology and surface topography of thin films, respectively. The study shows that the hardness of films strongly depends on the grain size and the film density, which are influenced by combined effect of the working pressure, temperature, and power of the sputtering process.  相似文献   

17.
SrTiO3 thin films were deposited by rf-magnetron sputtering under various sputtering conditions followed by conventional furnace annealing at 600 and 700 °C. The amorphous SrTiO3 thin films crystallized into polycrystals at 600 °C. The leakage current of the SrTiO3 thin films decreased with increasing oxygen partial pressure in the sputtering gas. On the contrary, the dielectric constant increased with increasing the oxygen content in the sputtering gas. The leakage current and dielectric constant increased with increasing substrate temperature and post-annealing temperature. The ratio of SrTi approached 11 with increasing oxygen content in the sputtering gas and substrate temperature during deposition. The oxygen content in the film decreased with increasing the substrate temperature. The capacitance-voltage (C-V) curves showed that the capacitance was nearly independent of the applied voltage. Scanning electron microscopy (SEM) micrographs showed that interdiffusion between the bottom electrode (Pt) and the buffer layer (Ti) occurred during post-annealing, but that the interface between SrTiO3 and Pt was stable.  相似文献   

18.
Thin molybdenum silicide films were deposited from a cold-pressed, vacuum-sintered composite target in a Varian 3180 sputtering system onto silicon wafers 100 mm in diameter. The argon pressure was varied from 4 to 15 mTorr and the substrate temperature from ambient to 450°C. The deposition rate, ratio of silicon to molybdenum, phase and thickness uniformity were found to be independent of these deposition variables. A minimum post-sintered resistivity of 82 μΩ cm was obtained on samples deposited at ambient temperature. Pressure and especially temperature affect the resistivities, and these effects may be explained from the impurity and grain size results.  相似文献   

19.
High rate deposition of ITO thin films at a low substrate temperature was attempted by using a facing target sputtering (FTS) system. Deposition rate as high as 53 nm/min was realized on polycarbonate film substrate of 80-μm thickness. When the film was deposited at a deposition rate above 80 nm/min, polycarbonate film substrate was thermally damaged. The film deposited by FTS has much smaller compressive film stress than the film deposited by conventional magnetron sputtering. The film stress was reduced significantly by increasing the sputtering gas pressure and stress-free films can be obtained by adjusting the sputtering gas pressure. This may be mainly caused by the fact that bombardment by high energy negative oxygen ions to substrate surface during deposition can be completely suppressed in the FTS. Film structure and electrical properties changed little with substrate position, and uniform films were obtained by the FTS.  相似文献   

20.
磁控溅射低温沉积ITO薄膜及其光电特性研究   总被引:1,自引:0,他引:1  
采用直流反应磁控溅射法低温沉积ITO薄膜,用XRD、SEM和UV—Vis分别表征ITO薄膜的晶体结构、表面形貌及其紫外-可见光吸收谱,研究了氧分压、溅射功率及薄膜厚度等工艺参数对薄膜光电性能的影响,结果表明,氧分压过大时,ITO薄膜中有大量的位错和缺陷,使薄膜的电阻率变大,导电性变差;氧分压过小时,薄膜中将有大量氧空位产生,导致晶格变形,使电阻率增加。随着溅射功率增大,在相同时间内薄膜厚度增加,方块电阻减小,薄膜电阻率降低。随着薄膜厚度增加,制备的薄膜晶体结构相对完整,载流子浓度和迁移率逐渐增大,薄膜电阻率变小,进而对样品的光电性能产生明显影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号