首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Drought is considered as a major natural hazard/ disaster, affecting several sectors of the economy and the environment worldwide. Drought, a complex phenomenon can be characterised by its severity, duration, and areal extent. Drought indices for the characterization and the monitoring of drought simplify the complex climatic functions and can quantify climatic anomalies for their severity, duration, and frequency. With this as background drought indices were worked out for Madurai district of Tamil Nadu using DrinC (Drought Indices Calculator) software. DrinC calculates the drought indices viz., deciles, Standard Precipitation Index (SPI), Reconnaissance Drought Index (RDI), Streamflow Drought Index (SDI) by providing a simple, though flexible interface by considering all the factors. The drought of 3, 6 and 9 months as time series can also be estimated. The results showed that drought index of Madurai region by decile method revealed that among the 100 years, 20 years were affected by drought and it is cyclic in nature and occurring almost every 3 to 7 years once repeatedly, except for some continuous period, i.e., 1923, 1924 and 1985, 1986, etc. During the last five decades, the incidence is higher with 13 events, whereas in the first five decades it was only 7. The SPI and RDI index also followed the similar trend of deciles. However, under SPI and RDI, the severely dry and extremely dry category was only seven years and all other drought years of deciles were moderately dry. Our study indicated that SPI is a better indicator than deciles since here severity can be understood. SDI did not follow the trend similar to SPI or RDI. Regression analysis showed that the SPI and RDI are significantly correlated and if 1st 3 months rainfall data is available one can predict yearly RDI drought index. The results demonstrated that these approaches could be useful for developing preparedness plan to combat the consequences of drought. Findings from such studies are useful tools for devising strategic preparedness plans to combat droughts and mitigate their effects on the activities in the various sectors of the economy.  相似文献   

2.
Understanding the characteristics of historical droughts will benefit water resource managers because it will reveal the possible impacts that future changes in climate may have on drought, and subsequently, the availability of water resources. The goal of this study was to reconstruct historical drought occurrences and assess future drought risk for the drought-prone Blue River Basin in Oklahoma, under a likely changing climate using three types of drought indices, i.e., Standardized Precipitation Index (SPI), Palmer Drought Severity Index (PDSI) and Standardized Runoff Index (SRI). No similar research has been conducted in this region previously. Monthly precipitation and temperature data from the observational period 1950?C1999 and over the projection period 2010?C2099 from 16 statistically downscaled Global Climate Models (GCM) were used to compute the duration, severity, and extent of meteorological droughts. Additionally, soil moisture, evapotranspiration (ET), and runoff data from the well-calibrated Thornthwaite Monthly Water Balance Model were used to examine drought from a hydrological perspective. The results show that the three indices captured the historical droughts for the past 50?years and suggest that more severe droughts of wider extent are very likely to occur over the next 90?years in the Blue River Basin, especially in the later part of the 21st century. In fact, all three indices display lower minimum values than those ever recorded in the past 50?years. This study also found that SRI and SPI (PDSI) had a correlation coefficient of 0.81 (0.78) with a 2-month (no appreciable) lag time over the 1950?C2099 time period across the basin. There was relatively lower correlation between SPI and PDSI over the same period. Although this study recommends that PDSI and SRI are the most suitable indices for assessing future drought risks under an increasingly warmer climate, more drought indices from ecological and socioeconomic perspectives should be investigated and compared to provide a complete picture of drought and its potential impacts on the dynamically coupled nature-human system.  相似文献   

3.
Regional Drought Assessment Based on the Reconnaissance Drought Index (RDI)   总被引:15,自引:7,他引:8  
Regional drought assessment is conventionally based on drought indices for the identification of drought intensity, duration and areal extent. In this study, a new index, the Reconnaissance Drought Index (RDI) is proposed together with the well known Standardized Precipitation Index (SPI) and the method of deciles. The new index exhibits significant advantages over the other indices by including apart from precipitation, an additional meteorological parameter, the potential evapotranspiration. The drought assessment is achieved using the above indices in two river basins, namely Mornos and Nestos basins in Greece. It is concluded that although the RDI generally responds in a similar fashion to the SPI (and to a lesser extent to the deciles), it is more sensitive and suitable in cases of a changing environment.  相似文献   

4.
Droughts can be considered as multidimensional hazardous phenomena characterised by three attributes: severity, duration and areal extent. Conventionally, drought events are assessed for their severity, using drought indices such as SPI (Standardised Precipitation Index), RDI (Reconnaissance Drought Index), PDSI (Palmer Drought Severity Index) and many others. This approach may be extended to incorporate the modelling of an additional dimension, the duration or the areal extent. Since the marginal distributions describing these dimensions of drought are often different, no simple mixed probability distribution can be used for the bivariate frequency analysis. The copula approach seems to be sufficiently general and suitable for this type of analysis. It is the aim of this paper to analyse droughts as two-dimensional phenomena, including drought severity and areal extent. In this paper, the Gumbel-Hougaard copula from the Archimedean family is used for this two-dimensional frequency analysis. Annual data on historical droughts from Eastern Crete are analysed for their severity and areal extent, producing copula-based probability distributions, incorporating Gumbel marginal probability functions. Useful conclusions are derived for estimating the «OR» return period of drought events related to both severity and areal extent.  相似文献   

5.

Under variable climatic conditions, the conventional Standardized Precipitation Index (SPI) and Reconnaissance Drought Index (RDI) are inadequate for predicting extreme drought characteristics. Non-stationary Standardized Precipitation Index (NSPI) and Non-stationary Reconnaissance Drought Index (NRDI) are, therefore, developed by fitting non-stationary distributions. The Generalized Additive Model in Location, Scale and Shape (GAMLSS) framework, with time varying location parameters considering the external covariates, is used to fit the non-stationary distributions. Multivariate ENSO Index (MEI), Southern Oscillation Index (SOI), Sea Surface Temperature (SST), and Indian Ocean Dipole (IOD) are considered as external covariates for the non-stationary drought assessment. The performances of stationary and non-stationary models are compared. The study also concentrated on the trivariate and the Pairwise Copula Construction (PCC) models to estimate the drought return periods. The comparison of two copula models revealed that the PCC model performed better than the trivariate Student’s t copula model. The recurrence intervals arrived at for the drought events are different for trivariate copula model and PCC model. This study showed that non-stationary drought indices will be helpful in the accurate estimate of the drought characteristics under the changing climatic scenario.

  相似文献   

6.
Surendran  U.  Anagha  B.  Raja  P.  Kumar  V.  Rajan  K.  Jayakumar  M. 《Water Resources Management》2019,33(4):1521-1540

The study aims at evaluating the various drought indices for the humid, semi-arid and arid regions of India using conventional indices, such as rainfall anomaly index, departure analysis of rainfall and other indices such as Standard Precipitation Index (SPI) and Reconnaissance Drought Index (RDI) that were analyzed using the DrinC software. In SPI, arid region has seven drought years, whereas humid and semi-arid regions have four. In case of RDI, the humid and semi-arid regions have 11 drought years, whereas arid regions have 10 years. The difference in SPI and RDI was due to the fact that RDI considered potential evapotranspiration, and hence, correlation with plants would be better in case of RDI. Humid region showed a decreasing trend in initial value of RDI during the drought as compared to semiarid and arid regions and indicated possible climate change impact in these regions. Among all the indices, RDI was considered as an effective indicator because of implicit severity and high prediction matches with the actual drought years. SPI and RDI were found to be well correlated with respect to 3 months rainfall data and SPI values led to prediction of annual RDI. The results of our study established that this correlation could be used for developing disaster management plan well in advance to combat the drought consequences.

  相似文献   

7.
Drought Indexes (DIs) are commonly used for assessing the effect of drought such as the duration and severity. In this study, long term precipitation records (monthly recorded for 44 years) in three stations (Boutilimit (station 1), Nouakchott (station 2), and Rosso (station 3)) are employed to investigate the drought characteristics in Trarza region in Mauritania. Six DI methods, namely normal Standardized Precipitation Index (normal-SPI), log normal Standardized Precipitation Index (log-SPI), Standardized Precipitation Index using Gamma distribution (Gamma-SPI), Percent of Normal (PN), the China-Z index (CZI), and Deciles are used for this purpose. The DI methods are based on 1-, 3-, 6-, and 12 month time periods. The results showed that DIs produce almost the same results for the Trarza region. The droughts are detected in the seventies and eighties more than the 1990s. Twelve drought years might be experienced in station 2 and six in stations 1 and 3 in every 44 years, according to reoccurrence probability of the gamma-SPI and log-SPI results. Stations 1 and 3 might experience fewer drought years than station 2, which is located right on the coast. In station 1, which is located inland, when the annual rainfall is less than 123 mm, it is likely that severe drought would occur. This is 63 mm/year for station 2 and 205 mm/year for station 3 which is located in the south west on the Senegal River. DI results indicate that the CZI and the gamma-SPI methods make similar predictions and the log-SPI makes extreme drought predictions for the monthly period for all the stations. For longer periods (3-, 6-, and 12 month period), for all the stations, the log-SPI and the gamma-SPI produce similar results, making severe drought predictions while the normal-SPI and the CZI methods predict more wet and fewer drought cases. The log-SPI, the gamma-SPI, PN and Deciles were able to capture the historical extreme and severe droughts observed in early 1970s and early 1980s.  相似文献   

8.
Traditionally, drought indices are calculated under stationary condition, the assumption that is not true in a changing environment. Under non-stationary conditions, it is assumed the probability distribution parameters vary linearly/non-linearly with time or other covariates. In this study, using the GAMLSS algorithm, a time-varying location parameter of lognormal distribution fitted to the initial values (α0) of the traditional Reconnaissance Drought Index (RDI) was developed to establish a new index called the Non-Stationary RDI (NRDI), simplifying drought monitoring under non-stationarity. The fifteen meteorological stations having the longest records (1951–2014) in Iran were chose to evaluate the NRDI performances for drought monitoring. Trend analysis of the α0 series at multiple time windows was tested by using the Mann-Kendall statistics. Although all stations detected decreasing trend in the α0 series, eight of them were significant at the 5% probability level. The results showed that the time-dependent relationship is adequate to model the location parameter at the stations with the significant temporal trend. There were remarkable differences between the NRDI and the RDI, especially for the time windows larger than 6 months, implying monitoring droughts using the NRDI under non-stationarity. The study suggests using the NRDI where the significant time trend appears in the initial values of RDI due to changing climate.  相似文献   

9.
Abstract

A better knowledge of droughts is required to improve water management in water scarce areas. To appropriately cope with droughts, there is the need to adopt adequate concepts relative to droughts and water scarcity, to properly use drought indices that help characterize them, including ones relative to their severity, and to develop prediction tools that may be useful for early warning and that may reduce the respective lead time needed for appropriate response. In this paper, concepts relative to drought and other water scarcity regimes are discussed aiming both to distinguish droughts from other water scarcity regimes and to base a common understanding of the general characteristics of droughts as hazards and disasters. Three main drought indices are described aiming at appropriate characterization of droughts: the theory of runs, the Palmer Drought Severity Index (PDSI), and the Standardized Precipitation Index (SPI). Their application to local and regional droughts in the region of Alentejo, Portugal is presented focusing on the respective comparison and possible adequateness for drought monitoring. Results indicate some difficulties in using the theory of runs, particularly because it requires a subjective definition of thresholds in precipitation and does not provide a standardized classification of severity. Results show that draught characterization with the PDSI and the SPI produce coherent information, but the PDSI is limited relative to the SPI because it requires more data to perform a soil water balance while the SPI needs only precipitation data, which are more easily available in numerous locations. It is concluded that adopting the SPI is appropriate, but there is advantage in combining different indices to characterize droughts.  相似文献   

10.
Nowadays human beings are facing many environmental challenges because of frequently occurring drought hazards. Several adverse impacts of drought hazard are continued in many parts of the world. Drought has a substantial influence on water resources and irrigation. It may effect on the country’s environment, communities, and industries. Therefore, it is important to improve drought monitoring system. In this paper, we proposed a novel method – Standardized Precipitation Temperature Index (SPTI) for drought monitoring that utilize the regional tempreature. We compared the performance of our proposed drought index – SPTI with commonly used drought indices (i.e., Standardized Precipitation Index (SPI) and Standardized Precipitation Evapotranspiration Index (SPEI)) for 17 meteorological stations of Khyber Pakhtunkhwa (KPK) province (Pakistan) that have both extreme (arid and humid) climatic environment. We found that SPTI is strongly correlated with SPI and performed better than SPEI in low temperature regions for drought monitoring. In summary, SPTI is recommended for detecting and monitoring the drought conditions over different time scales.  相似文献   

11.
Assessment of Hydrological Drought Revisited   总被引:11,自引:1,他引:10  
A variety of indices for characterising hydrological drought have been devised which, in general, are data demanding and computationally intensive. On the contrary, for meteorological droughts very simple and effective indices such as the Standardised Precipitation Index (SPI) have been used. A methodology for characterising the severity of hydrological droughts is proposed which uses an index analogous to SPI, the Streamflow Drought Index (SDI). Cumulative streamflow is used for overlapping periods of 3, 6, 9 and 12 months within each hydrological year. Drought states are defined which form a non-stationary Markov chain. Prediction of hydrological drought based on precipitation is also investigated. The methodology is validated using reliable data from the Evinos river basin (Greece). It can be easily applied within a Drought Watch System in river basins with significant storage works and can cope with the lack of streamflow data.  相似文献   

12.
Effective monitoring of drought plays an important role in water resources planning and management, especially under global warming effect. The aim of this paper is to study the effect of air temperature on historical long-term droughts in regions with diverse climates in Iran. To this end, monthly air temperature (T) and precipitation (P) data were gathered from 15 longest record meteorological stations in Iran covering the period 1951–2014. Long-term meteorological droughts behavior was quantified using two different drought indices, i.e. the Standardized Precipitation Index (SPI) and the Standardized Precipitation Evapotranspiration Index (SPEI). Linear and non-linear trends in T, P, SPI and SPEI were evaluated using non-parametric and parametric statistical approaches such as non-modified and modified Mann-Kendall Test, Theil-Sen approach, and simple regression. The results indicated that the significant trends for temperature are approximately all increasing (0.2 °C to 0.5 °C per decade), and for precipitation are mostly decreasing (?7.2 mm to ?14.8 mm per decade). It was also indicated that long-term drought intensities monitored by the SPI and SPEI have had significant downward trend (drought intensification with time) at most stations of interest. The observed trends in the SPI series can be worsen if air temperature (in addition to precipitation) participates in drought monitoring as SPEI. In arid and extra arid climates, it was observed that temperature has strong effects on historical drought characteristics when comparing the SPI and SPEI series. Due to the determinative role of temperature in mostly dry regions like Iran, the study suggests using the SPEI rather than SPI for more effective monitoring of droughts.  相似文献   

13.

This study aims to investigate the effect of climate change on the probability of drought occurrence in central Iran. To this end, a new drought index called Multivariate Standardized Drought Index (MSDI) was developed, which is composed of the Standardized Precipitation Evapotranspiration Index (SPEI) and the Standardized Soil Moisture Index (SSI). The required data included precipitation, temperature (from CRU TS), and soil moisture (from the ESA CCA SM product) on a monthly time scale for the 1980–2016 period. Moreover, future climate data were downloaded from CMIP6 models under the latest SSPs-RCPs emission scenarios (SSP1-2.6 and SSP5-8.5) for the 2020–2056 period. Based on the normalized root mean square error (NRMSE), Cramer-von mises statistic (Sn), and Nash Sutcliffe (NS) evaluation criteria, the Galambos and Clayton functions were selected to derive copula-based joint distribution functions in both periods. The results showed that more severe and longer droughts will occur in the future compared to the historical period and in particular under the SSP5-8.5 scenario. From the derived joint return period, a drought event with defined severity or duration will happen in a shorter return period as compared with the historical period. In other words, the joint return period indicated a higher probability of drought occurrence in the future period. Moreover, the joint return period analysis revealed that the return period of mild droughts will remain the same, while it will decrease for extreme droughts in the future.

  相似文献   

14.
Drought is known as one of the main natural hazards especially in arid and semi-arid regions where there are considerable issues in regard to water resources management. Also, climate changes has been introduced as a global concern and therefore, under conditions of climate change and global warming, the investigation of drought severity trend in regions such as Iran which is mainly covered by arid and semi-arid climate conditions is in the primary of importance. Therefore, in this study, based on the application of Reconnaissance Drought Index (RDI) for assessment drought severities, and also the implementation of non-parametric Mann- Kendall statistics and Sen’s slope estimator, the trends in different time series of RDI (3, 6, 9, 12, 18 and 24 monthly time series) were investigated. Results indicated the frequent decreasing trends in RDI time series particularly for long term time series (12, 18 and 24 monthly time series) than short term ones. Decreasing trend in RDI time series means the increasing trend in drought severities. Since the water resources especially ground water in most cases are affected by long term droughts, therefore, increasing trend in drought intensities in long term ones can be a threat for water resources management in surveyed areas.  相似文献   

15.

Precise analysis of spatiotemporal trends of temperature, precipitation and meteorological droughts plays a key role in the sustainable management of water resources in the given region. This study first aims to detect the long-term climate (monthly/seasonally and annually) trends from the historical temperature and precipitation data series by applying Spearmen’s Rho and Mann-Kendall test at 5 % significant level. The measurements of both climate variables for a total period of 49 years (1965–2013) were collected from the 11 different meteorological stations located in the Songhua River basin of China. Secondly, the two well-known meteorological drought indices including the Standardized Precipitation Index (SPI) and Reconnaissance Drought Index (RDI) were applied on normalize data to detect the drought hazards at 3, 6, 9 and 12 month time scale in the study area. The analysis of monthly precipitation showed significant (p < 0.05) increasing trends during the winter (November and December months) season. Similarly, the results of seasonal and annual air temperature showed a significant increase from 1 °C to 1.5 °C for the past 49 years in the basin. According to the Sen’s slope estimator, the rate of increment in seasonal temperature slope (0.26 °C/season) and precipitation (9.02 mm/season) were greater than annual air temperature (0.04 °C/year) and precipitation (1.36 mm/year). By comparing the results of SPI and RDI indices showed good performance at 9 (r = 0.96, p < 0.01) and 12 (r = 0.99, p < 0.01) month drought analysis. However, the yearly drought analysis at over all stations indicated that a 20 years were under dry conditions in entire study area during 49 years. We found the extreme dry and wet conditions in the study region were prevailing during the years of 2001 and 2007, and 1994 and 2013, respectively. Overall, the analysis and quantifications of this study provides a mechanism for the policy makers to mitigate the impact of extreme climate and drought conditions in order to improve local water resources management in the region.

  相似文献   

16.
Spatial Patterns and Temporal Variability of Drought in Western Iran   总被引:12,自引:5,他引:7  
An analysis of drought in western Iran from 1966 to 2000 is presented using monthly precipitation data observed at 140 gauges uniformly distributed over the area. Drought conditions have been assessed by means of the Standardized Precipitation Index (SPI). To study the long-term drought variability the principal component analysis was applied to the SPI field computed on 12-month time scale. The analysis shows that applying an orthogonal rotation to the first two principal component patterns, two distinct sub-regions having different climatic variability may be identified. Results have been compared to those obtained for the large-scale using re-analysis data suggesting a satisfactory agreement. Furthermore, the extension of the large-scale analysis to a longer period (1948–2007) shows that the spatial patterns and the associated time variability of drought are subjected to noticeable changes. Finally, the relationship between hydrological droughts in the two sub-regions and El Niño Southern Oscillation events has been investigated finding that there is not clear evidence for a link between the two phenomena.  相似文献   

17.
The proper consideration of all plausible feature spaces of the hydrological cycle and inherent uncertainty in preceding developed drought indices is inevitable for comprehensive drought assessment. Therefore, this study employed the Dynamic Naive Bayesian Classifier (DNBC) for multi-index probabilistic drought assessment by integrating various drought indices (i.e., Standardized Precipitation Index (SPI), Streamflow Drought Index (SDI), and Normalized Vegetation Supply Water Index (NVSWI)) as indicators of different feature spaces (i.e., meteorological, hydrological, and agricultural) contributing to drought occurrence. The overall results showed that the proposed model was able to account for various physical forms of drought in probabilistic drought assessment, to accurately detect a drought event better than (or occasionally equal to) any single drought index, to provide useful information for assessing potential drought risk, and to precisely capture drought persistence in terms of drought state transition probability in drought monitoring. This easily produced an alternative method for comprehensive drought assessment with combined use of different drought indices.  相似文献   

18.
This study has investigated the spatio-temporal changes of droughts from 1961 to 2005 in the Wei River Basin. The Standardized Precipitation Index (SPI) was employed to describe the droughts. The trends of SPI value at all the meteorological stations were calculated by using the modified Mann-Kendall (MMK) trend test method, indicating that the western basin has a significantly wet trend, whilst the eastern basin including the Guanzhong Plain has a trend towards drought . Since the historical droughts records were too short to fully investigate drought properties in this basin, a practical nonparametric method was proposed to calculate the joint probability distribution of drought properties, which overcomes the shortcomings of the univariate and parametric frequency analysis. The frequency analysis of drought in the Wei River Basin indicates that the Guanzhong Plain and the surrounding areas of Huanxian meteorological station have a high drought risks, whilst the western and northern basin except the surrounding areas of Huanxian station has a relatively low drought risk.  相似文献   

19.
为了分析未来时期(2020-2099年)长江中下游区域气象干旱演变特征,选取跨行业影响模式比较计划(ISI-MIP)的4个全球气候模式,基于不同代表性浓度路径(RCP)的排放情景(RCP-2.6、RCP-6.0和RCP-8.5),分别计算了标准化降水指数(SPI)和标准化蒸散发指数(SPEI),探讨了两种指数对研究区气...  相似文献   

20.
A 6-month drought severity index (DSI6) is applied to each of the 11-member perturbed-physics ensemble (HadRM3-PPE-UK) monthly precipitation dataset from 1950 to 2100 to investigate projected 21st century droughts in the UK. Four main drought characteristics are investigated: intensity, drought covariance, frequency of drought months and frequency of drought events at a given duration. Changes in these characteristics are analysed for 30-year periods: 1970–1999 (1980s), 2010–2039 (2020s), 2040–2069 (2050s) and 2070–2099 (2080s) and described in terms of their seasonal behaviour, for both moderate and extreme droughts. Projections of drought characteristics are expressed in the forms of ensemble-mean change relative to the 1980s and model consensus, and analysed over 23 water resource regions. In general, drought characteristics show profound increases (and widespread) for the 2050s and 2080s with larger change occurring during the wet season and under moderate drought conditions. Drought covariance sees greater increase during the dry season with greater change magnitude (but less widespread) under extreme drought conditions. Results also show that droughts can persist over long durations. However, the projected frequency of droughts at longer durations is low compared with droughts with shorter duration of persistence. Water resource regions (WWRs) mostly show negative change in drought characteristics, except for drought covariance. However, intensity and duration of droughts also generally increase over most of the WRRs in England, which are already highly exploited. Of particular relevance to water management, results from this ensemble have a strong influence on dry season water availability, especially in parts of England.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号