首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Water distribution systems, where flow in some pipes is not measured or storage tanks are connected together, calculation of demand pattern coefficients of the network is difficult. Since, Hazen-Williams coefficients of the network are also unknown; the problem is becoming unintelligible further. The present study proposes a new method for simultaneous calibration of demand pattern and Hazen-Williams coefficients that uses the Ant Colony Optimization (ACO) algorithms coupled with the hydraulic simulator (EPANET2) in a MATLAB code. In this paper demand pattern and Hazen-Williams coefficients are the calibration parameters and measured data consist of nodal pressure heads and pipe flows. The defined objective function minimizes the difference between the measured and simulated values. The new proposed method was tested on a two-loop test example and a real water distribution network. The results show that the new calibration model is able to calibrate demand pattern and Hazen-Williams coefficients simultaneously with high precision and accuracy.  相似文献   

2.
供水管网的节点用水量和水损系数具有明显的不确定性,为研究节点用水量和水损系数的不确定性对供水管网水力特性的影响,提出了在假定他们的随机变化服从正态分布的条件下,采用蒙特卡罗随机抽样法,对所获的每组节点用水量和水损系数的抽样值,应用稳态的水力模型计算相应的节点测压管水头和管段流量,得出节点测压管水头和管段流量的统计值的计算方法。文中给出了该算法在两管网中的应用。  相似文献   

3.
基于尼古拉兹圆管实验思想,利用颗粒流程序中的流体计算模块,实现了对圆管壁粗糙度的模拟,进而分析了不同粗糙度对圆管断面流态分布的影响以及在不同压力差作用下平均流速与圆管壁粗糙度之间的关系。研究结果表明:圆管内流体流速受管壁的扰动影响,在横截面上呈U型分布,而非抛物线型分布;圆管壁对管内流体流态的影响范围随管壁粗糙度变化而变化,圆管管壁相对粗糙度越大,管内受扰动流体范围越大,即管内层流范围越小;在管壁粗糙度一定的情况下,圆管断面流量随上下端面压力差的增大而增大;在相同压力差作用下,圆管断面流量随管壁相对粗糙度增大而逐渐减小,颗粒的阻流作用明显;随着管壁粗糙度的增大,圆管上下端面受压力差作用的影响范围也随之增大,使管内流体流态变得更加复杂。  相似文献   

4.
为了更精细地对水文全过程进行描述和解析,更准确地构建分布式水文模型,以丹麦Karup流域为例,对MIKE SHE模型的饱和导水率、饱和带水平水力传导系数、河床透水系数进行了参数率定,模拟流域的日径流过程。结果表明:基于BP神经网络反分析的参数率定方法比MIKE SHE模型参数自动率定计算得到的均方根误差RMSE小,模型效率系数Ens更接近1;采用BP神经网络反演率定参数后,3组测试样本的日径流模拟过程的RMSE分别为0.04,0.03,0.08 m3/s,Ens均为0.99,且模拟结果能较好地反映径流的实际变化趋势。因此,这种基于BP神经网络反分析的参数率定方法对构建分布式水文模型具有一定的价值。  相似文献   

5.
Calibration of model parameters is of utmost importance to ensure the good performance of hydraulic simulation models. In this work, calibration is conceived within a joint multi-period parameter and state estimation approach, where model parameters (i.e. roughness coefficients) and hydraulic variables should be computed from available measurements at different times. The aim of this paper is twofold: (1) to present a novel methodology for the calibration of water networks via multi-period state estimation, and (2) to adapt observability analysis to this approach. The novelty of this work is that such a large-scale non-linear optimisation problem is here solved using mathematical programming decomposition techniques. On the other hand, observability analysis requires the construction of the multi-period measurement and parameter Jacobian matrix of the problem. The proposed approach enables computation of the observable roughness coefficients from available readings over time, making possible the periodic reassessment of roughness values based on recent online measurements. The potential of the method is illustrated by means of a case study, which shows how such a methodology would contribute to make the most of telemetry data for calibration purposes.  相似文献   

6.
The acoustic attenuation, relative sound pressure levels and the equivalent Nikuradse wall roughness under variable flow conditions in a 600 mm concrete sewer pipe are experimentally investigated. The values of the acoustic attenuation are obtained in the case of airborne sound propagation in the dry pipe. A range of values of the equivalent wall roughness is artificially generated by deploying a periodical array of engineering bricks. A novel method of rapid evaluation of the acoustic attenuation is proposed. The method relies upon sound reflections from the adjacent manholes. The results demonstrate that the acoustic attenuation depends strongly on the value of the equivalent wall roughness. This work can pave the way to the efficient methodology for the in-situ, physical evaluation of the equivalent hydraulic roughness of new and existing sewer networks.  相似文献   

7.
The design of new water distribution networks (WDNs) is an important social problem. Failures during an operational period provoke deficits in consumption nodes thus decreasing the performance of the network. WDN performance can be defined as the ability to sufficiently secure demand and desirable pressure in nodes based on changes in design parameters. This paper focuses on the evaluation of network performance during an operational period, taking into account pipe roughness uncertainty. A network analysis is performed by generating probabilistic series of pipe roughness using Monte Carlo simulation (MCS) in the operational period of the Two-loop WDN. Results show that an increase in pipe roughness uncertainty causes a decrease in network performance in the operational period. Furthermore, the network has a desirable efficiency only in the first 10 years. Thus, the proposed design methodology that considers the uncertainty of design variables is an effective procedure to evaluate network performance.  相似文献   

8.
Recently, there has been an increase in the use of meta-heuristic techniques addressing water distribution network design and management optimization problems. The meta-heuristic approach applied to water distribution systems has provided interesting results both for optimum pipe diameter sizing and for the location and management of network pressure control devices (i.e., pumps and valves). Regarding the insertion and calibration of pressure regulation valves, the use of meta-heuristic techniques is relatively recent. We search to strategically placing the valves in order to achieve pressure control in the network and, therefore, the valves must be calibrated in relation to water demand trends over time. In the Pressure Reference Method (PRM) described in this paper, the search for valve location is restricted to pipe-branch sets defined on the basis of hydraulic analysis and considering the range between minimum and maximum acceptable pressures in the network. In the PRM approach, the Scatter-Search (Glover and Laguna, 1997) meta-heuristic procedures are applied to obtain the optimal location and calibration of valves in the water distribution network.  相似文献   

9.
Constructing a robust hydraulic network model is vitally important, but a time-consuming task. Over last two decades, several approaches using optimization techniques have been developed for identifying model parameters. Although most of the methods can make the model agree with field observations, few are able to achieve a good level of accuracy in terms of determining the correct model parameters for a water distribution system. The previously developed methods appear to be lacking versatility for users to specify calibration tasks given real data for a real system. This paper proposes a comprehensive framework for evolving a hydraulic network model. Calibration tasks can be specified according to data availability and model application requirements. It allows an engineer to (1) flexibly choose any combination of the model parameters such as pipe roughness, junction demand and link (pipes, valves and pumps) operational status; (2) easily aggregate model parameters to reduce the problem dimension for expeditious calculation and (3) consistently specify boundary conditions and junction demand loadings that are corresponding to field data collection. A model calibration is then defined as an implicit nonlinear optimization problem, which is solved by employing a competent evolutionary algorithm. With this methodology, a modeler can be fully assisted to carry out not only a single parameter optimization run, but also a variety of calibration tasks in a progressive manner according to practical system conditions, thus it is possible to achieve a good model calibration with high level of confidence. The method has been applied to the model of a municipal water system to demonstrate the efficacy and robustness of the evolutionary modeling practices.  相似文献   

10.
Groundwater models are computer models that simulate or predict aquifer conditions by using input data sets and hydraulic parameters. Commonly, hydraulic parameters are extracted by calibration, using observed and simulated aquifer conditions. The accuracy of calibration affects other modeling processes, especially the hydraulic head simulation. Meta-heuristic algorithms are good candidates to determine optimal/near-optimal parameters in groundwater models. In this paper, two meta-heuristic algorithms: (1) particle swarm optimization (PSO) and (2) pattern search (PS) are applied and compared in the Ghaen aquifer, by considering the sum of the squared deviation (SSD) between observed and simulated hydraulic heads and the sum of the absolute value of deviation (SAD) between observed and simulated hydraulic heads as the objective functions. Results show that obtained values of the objective function are enhanced significantly by using the PS algorithm. Accordingly, PS improves (decreases) the SSD and SAD by 0.20 and 2.36 percent, respectively, compared to results reported by using the PSO algorithm. Results also indicate that the proposed PS optimization tool is effective in the calibration of aquifer parameters.  相似文献   

11.
HBMO algorithm for calibrating water distribution network of Langarud city   总被引:5,自引:0,他引:5  
In this paper a new meta-heuristic approach based on the nature of honey bees mating has been used for the calibration of a real city in the north of Iran named Langarud. This city has a population of nearly 68,000 people and about 43,000 water consumers. Langarud's area is about 900 km(2). The method was used to determine the Hazen-Williams roughness factor of the main pipes of the town and a correction factor for the nodal demands in the main nodes of the network.  相似文献   

12.
Decision-making for the rehabilitation of water distribution networks in the traditional procedure is based on some simple indices such as the number of incidents while several mechanical, hydraulic and qualitative factors are involved in this process. Evidently, making decision on the rehabilitation of water networks seems to be very difficult as the number of factors increases and they interact with each other. The main objective of this research is to prepare, implement and evaluate a conceptual model to prioritize the rehabilitation of pipes based on different scenarios with respect to the combination effects of basic factors in physical, hydraulic and experimental categories. In order to organize the wide range of data to be used in decision-making models, including the plans aimed for pipe replacement, it is necessary to use geographical information systems (GIS). By determining and introducing the factors involved in the rehabilitation of water networks, this research aims to provide an integrated model consisting of conceptual, GIS, hydraulic analysis and the breakage models to prioritize the rehabilitation schemes. By using the data provided from a real network, the advantages of the proposed methodology are evaluated. Based on the obtained results, age factor, among all the other physical parameters, and pressure, among the hydraulic factors, have the greatest influence in outlining the final rehabilitation scenario. The importance of the pipe length has decreased considerably as well. Furthermore, it can be concluded that rehabilitation management of pipe networks can be optimized by using this methodology.  相似文献   

13.
There are three methods for analysing the flow and pressure distribution in looped water supply networks (the loop method, the node method, the pipe method), accounting for the chosen unknown hydraulic parameters. For all of these methods, the nonlinear system of equations can be solved using iterative procedures (Hardy–Cross, Newton–Raphson, linear theory). In the cases of the extension or the rehabilitation of distribution networks, the unknown parameters are the hydraulic heads at nodes, and the nodal method for network analysis is preferred. In this paper, a generalised classic model is developed for the nodal analysis of complex looped systems with non-standard network components and the solvability of new problems, along with the determination of the pressure state in the system. In addition, this paper exhibits a different approach to this problem by using the variational formulation method for the development of a new analysis model based on unconditioned optimisation techniques. This model has the advantage of using a specialised optimisation algorithm, which directly minimises an objective multivariable function without constraints, implemented in a computer program. The two proposed models are compared with the classic Hardy–Cross method, and the results indicated a good performance of these models. Finally, a study is performed regarding the implications of the long-term operation of the pipe network on energy consumption using these models. The new models can serve as guidelines to supplement existing procedures of network analysis.  相似文献   

14.
李新  谢晓勇 《人民长江》2017,48(20):71-75
针对三个泉倒虹吸实际过流能力富余、小洼槽倒虹吸实际过流能力不足的问题,基于工程特点及水力设计习惯,借鉴当量糙度的取值方法,分析了不同流量下三个泉与小洼槽倒虹吸的沿程水头损失,并与实测值对比。结果表明:对于三个泉倒虹吸的PCCP管和钢管,用柯尔布鲁克公式计算所得的水头损失与实测值更接近,明显小于水力设计时采用谢才公式所得值;对于小洼槽倒虹吸的玻璃钢管,用柯尔布鲁克公式计算所得的水头损失与实测值也更接近,但明显大于水力设计时采用谢才公式所得值。在此基础上,利用计算获得的沿程水头损失反算得出糙率n值和当量糙度Δ值,发现实际过流能力出现偏差的主要原因是水力设计时采用的谢才公式不适用于大口径倒虹吸管道内的流态。  相似文献   

15.
For transient analysis of a pipe network, the unsteady flow governing equations should be solved to obtain the extreme pressure heads in the system, which may be faced with several uncertainties. To evaluate that to what extent the input uncertainties can affect the system responses, a simulation model based on the fuzzy sets theory is introduced. For this purpose, triangular fuzzy numbers are used to represent the input uncertainties. Then, to obtain the extreme pressure heads in each location of the network and at each level of uncertainty, four independent optimization problems are solved. In these problems, the nodal maximum and minimum pressure heads are the objective functions and the simulation parameters are the decision variables. Accordingly, for fuzzy analysis of a pipe network, a complicated many-objective optimization problem arises. To solve the problem efficiently a many-objective genetic algorithm is coupled to the transient simulation model. To speed up the analysis, a transient simulation model in the frequency domain is used. The proposed model is applied to a pipe network and the results are discussed. The model is found computationally fast and promising for real applications.  相似文献   

16.
EPANET-2 is a popular public domain package widely used to determine flow in Water Distribution Networks (WDN) in Extended Period Simulation (EPS). In its original formulation the water demand is represented as lumped withdrawals at network nodes. However, this approximation may introduce significant errors in the hydraulic head distribution, since energy balance is not respected at the level of the single edge (pipe). To overcome this drawback we propose a new implementation of EPANET-2 with the water demand uniformly distributed along the pipes. This new formulation obeys energy balance but introduces significant changes in the system of equations, which is therefore solved by introducing a proper relaxation factor in the Global Gradient Algorithm (GGA) implemented in the original version of the software. This new version of the software, we named DD-EPANET, produces an accurate representation of pressure distribution and allows to identify accurately the point of minimum head also when it is located within an edge of the network. The new scheme is suitable for long term simulations in particular for calibration and optimization of WDNs, in particular when data on water demand are scarce.  相似文献   

17.
A new multi-directional search approach that aims at maximizing the flow entropy of water distribution systems is investigated. The aim is to develop an efficient and practical maximum entropy based approach. The resulting optimization problem has four objectives, and the merits of objective reduction in the computational solution of the problem are investigated also. The relationship between statistical flow entropy and hydraulic reliability/failure tolerance is not monotonic. Consequently, a large number of maximum flow entropy solutions must be investigated to strike a balance between cost and hydraulic reliability. A multi-objective evolutionary optimization model is developed that generates simultaneously a wide range of maximum entropy values along with clusters of maximum and near-maximum entropy solutions. Results for a benchmark network and a real network in the literature are included that demonstrate the effectiveness of the procedure.  相似文献   

18.
The design of water distribution networks (WDNs) is an optimization problem with minimization of pipes and their associated installation costs as the objective function. In this problem, securing the allowable minimum pressure or the allowable maximum velocity in the demand pattern is important. A reliable long-term system requires a high reliability when first designed. Thus, assessment of the network condition during the operational period, when it is first designed, can be an effective way to increase the network efficiency. In addition, consideration of uncertainty of network parameters is important. This paper develops a probabilistic model based on the Monte Carlo simulation (MCS) method to assess effects of those uncertainties simultaneously in the long-term performance of the network by considering various scenarios for variations of nodal demands and pipe roughness using different values of the coefficient of variation (CV) as the uncertainty measure. Consumption nodal demands and pipe roughness in a benchmark two-loop network are considered as uncertain variables. Calculation of a deterministic performance (failure) index (I f ) for various generated probabilistic scenarios in the MCS method during a 30-year operational period simulation in this network show that an increase of uncertainty in each variable separately causes a decrease in the deterministically-designed network efficiency. Sensitivity of changing the average value of I f calculations show a nodal demand deficit of 45 % and a nodal pressure deficit of 61 % during the operational period. This condition shows the necessity of considering uncertain changes of variables simultaneously during the operational period in the design of WDNs.  相似文献   

19.
Large-scale river models are generally discretized by relatively large mesh cells resulting in bathymetry discretization errors and numerical effects. These hydraulic models are generally calibrated by altering the bed roughness to compensate for these errors and effects. Consequently, the calibrated roughness values are mesh-dependent while generally local mesh refinements are executed after model calibration to study the effects of river interventions. This study shows both the errors caused by bathymetry discretization and numerical effects for locally refined meshes. First, schematised river meanders with a flat bed in the transverse flow direction are analysed to isolate the induced numerical effects by the mesh. Afterwards, a case study is considered to verify if similar mesh influences are found in natural river meanders. Curvilinear, triangular and hybrid (combination of curvilinear and triangular cells) meshes are used with different resolutions. The analysis shows that in the schematised river meanders lower depth-averaged flow velocities and larger water depths are simulated with coarser meshes. In the case study, substantial differences in hydrodynamics between the meshes are obtained suggesting that the bathymetry discretization is more influential than the numerical effects. Finally, it was found that triangular meshes, and rivers with narrow meander bends, are most sensitive to mesh resolution. Especially in these cases, it is desirable to refine the mesh at the desired locations before model calibration.  相似文献   

20.
为筛选出代表性强、敏感度高的指标用于供水管网健康状态评价,对11个供水管网健康状态评价指标进行层次划分,并基于因子分析进行贡献度计算和敏感性分析。层次划分结果表明,评价体系包括外部环境对管道静态结构影响因素、管道内部静态结构影响因素、水质影响因素、水力影响因素;贡献度和敏感度分析结果表明,内外衬层、管径、节点流量与总流量比值、余氯、节点压力与服务最低压力比值、覆土厚度、管材、管龄8个指标应该作为基础的必选指标,并且应尽量提高内外衬层、管径、节点流量与总流量比值、余氯、覆土厚度、管龄数据的精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号