首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 369 毫秒
1.
Photoconversion and photobleaching behavior of the fluorescent protein Kaede immobilized in polyacrylamide gel matrix at room temperature was studied by single molecule wide-field fluorescence microscopy. Photobleaching kinetics of Kaede molecules upon excitation at 488 nm showed slight heterogeneity, suggesting the presence of different protein conformations and/or the distribution of local environments in the gel matrix. Statistical analysis of intensity trajectories of single molecules revealed four major types of fluorescence dynamics behavior upon short illumination by a violet light pulse (405 nm). In particular, two types of photoswitching behavior were observed: the green-to-red photoconversion (4% of Kaede molecules) and the photoactivation of green fluorescence without emission of red fluorescence (13%). Two other major groups show neither photoconversion nor red emission and demonstrate photoinduced partial deactivation (43%) and partial revival (30%) of green fluorescence. The significantly lower green-to-red conversion ratio as compared with bulk measurements in aqueous solution might be induced by the immobilization of the protein molecules within a polyacrylamide gel. Contrary to Ando et al. (Proc Natl Acad Sci 2002;99:12651-12656), we found a significant increase in green fluorescence emission upon illumination with 405-nm light, which is typical for GFP and related proteins.  相似文献   

2.
We have used a multiple-laser confocal microscope with lines at 325, 442, 488, 514 and 633 nm to investigate optical sectioning of botanical specimens over a wide range of wavelengths. The 442-nm line allowed efficient excitation of Chromomycin A3, with minimal background autofluorescence, to visualize GC-rich heterochromatin as an aid to chromosome identification. Sequential excitation with 442- and 488-nm light enabled ratio imaging of cytosolic pH using BCECF. The red HeNe laser penetrated deep into intact plant tissues, being less prone to scattering than shorter blue lines, and was also used to image fluorescent samples in reflection, prior to fluorescence measurements, to reduce photobleaching. Chromatic corrections are more important in confocal microscope optics than in conventional microscopy. Measured focus differences between blue, green and red wavelengths, for commonly used objectives, were up to half the optical section thickness for both our multi-laser system and a multi-line single-laser instrument. This limited high-resolution sectioning at visible wavelengths caused a loss in signal. For ultraviolet excitation the focus shift was much larger and had to be corrected by pre-focusing the illumination. With this system we have imaged DAPI-stained nuclei, callose in pollen tubes using Aniline Blue and the calcium probe Indo-1.  相似文献   

3.
To determine the application limits of green fluorescent protein (GFP) as a reporter gene or protein tag, we expressed GFP by itself and with fusion protein partners, and used three different imaging methods to identify GFP fluorescence. In conventional epifluorescence photomicroscopy, GFP expressed in cells could be distinguished as a bright green signal over a yellow-green autofluorescence background. In quantitative fluorescence microscopy, however, the GFP signal is contaminated by cellular autofluorescence. Improved separation of GFP signal from HeLa cell autofluorescence was achieved by the combination of confocal scanning laser microscopy using 488-nm excitation, a rapid cut-on dichroic mirror and a narrow-bandpass emission filter. Two-photon excitation of GFP fluorescence at the equivalent of ? 390 nm provided better absorption than did 488-nm excitation. This resulted in increased signal/background but also generated a different autofluorescence pattern and appeared to increase GFP photobleaching. Fluorescence spectra similar to those of GFP alone were observed when GFP was expressed as a fusion protein either with glutathione-S-transferase (GST) or with glucokinase. Furthermore, purified GST?GFP fusion protein displayed an extinction coefficient and quantum yield consistent with values previously reported for GFP alone. In HeLa cells, the cytoplasmic GFP concentration must be greater than ? 1 μM to allow quantifiable discrimination over autofluorescence. However, lower expression levels may be detectable if GFP is targeted to discrete subcellular compartments, such as the plasma membrane, organelles or nucleus.  相似文献   

4.
The axial spread function is a useful tool for evaluation of a confocal microscope. It can be obtained experimentally by scanning a uniform fluorescent layer whose thickness is significantly below the resolution limit. Previous researchers have created thin fluorescent films by chemical synthesis. We show here that concentrated fluorescent dyes with a strong absorption at the excitation wavelength can serve as a good approximation of thin fluorescent films. The vertical intensity profiles of such dyes are symmetrical and represent the true axial resolution of a microscope. Solutions of dyes sufficiently opaque to test confocal microscopes with high‐NA objectives can be prepared from sodium fluorescein, acid fuchsin and acid blue 9 for excitation at 488 nm, 543 nm and 633 nm, respectively.  相似文献   

5.
Multiphoton excitation was originally projected to improve live cell fluorescence imaging by minimizing photobleaching effects outside the focal plane, yet reports suggest that photobleaching within the focal plane is actually worse than with one photon excitation. We confirm that when imaging enhanced green fluorescent protein, photobleaching is indeed more acute within the multiphoton excitation volume, so that whilst fluorescence increases as predicted with the square of the excitation power, photobleaching rates increase with a higher order relationship. Crucially however, multiphoton excitation also affords unique opportunities for substantial improvements to fluorescence detection. By using a Pockels cell to minimize exposure of the specimen together with multiple nondescanned detectors we show quantitatively that for any particular bleach rate multiphoton excitation produces significantly more signal than one photon excitation confocal microscopy in high resolution Z‐axis sectioning of thin samples. Both modifications are readily implemented on a commercial multiphoton microscope system.  相似文献   

6.
This review discusses applications of fluorescence microscopy using totally internally reflected excitation light. When totally internally reflected in a transparent solid at its interface with liquid, the excitation light beam penetrates only a short distance into the liquid. This surface electromagnetic field, called the ‘evanescent wave’, can selectively excite fluorescent molecules in the liquid near the interface. Total internal reflection fluorescence (TIRF) has been used to examine the cell/substrate contact regions of primary cultured rat myotubes with acetylcholine receptors labelled by fluorescent α-bungarotoxin and human skin fibroblasts labelled with a membrane-incorporated fluorescent lipid. TIRF examination of cell/substrate contacts dramatically reduces background from cell autofluorescence and debris. TIRF has also been combined with fluorescence photobleaching recovery and correlation spectroscopy to measure the chemical kinetic binding rates and surface diffusion constant of fluorescent labelled serum protein binding (at equilibrium) to a surface.  相似文献   

7.
Single-molecule fluorescence imaging is at the forefront of tools applied to study biomolecular dynamics both in vitro and in vivo. The ability of the single-molecule fluorescence microscope to conduct simultaneous multi-color excitation and detection is a key experimental feature that is under continuous development. In this paper, we describe in detail the design and the construction of a sophisticated and versatile multi-color excitation and emission fluorescence instrument for studying biomolecular dynamics at the single-molecule level. The setup is novel, economical and compact, where two inverted microscopes share a laser combiner module with six individual laser sources that extend from 400 to 640 nm. Nonetheless, each microscope can independently and in a flexible manner select the combinations, sequences, and intensities of the excitation wavelengths. This high flexibility is achieved by the replacement of conventional mechanical shutters with acousto-optic tunable filter (AOTF). The use of AOTF provides major advancement by controlling the intensities, duration, and selection of up to eight different wavelengths with microsecond alternation time in a transparent and easy manner for the end user. To our knowledge this is the first time AOTF is applied to wide-field total internal reflection fluorescence (TIRF) microscopy even though it has been commonly used in multi-wavelength confocal microscopy. The laser outputs from the combiner module are coupled to the microscopes by two sets of four single-mode optic fibers in order to allow for the optimization of the TIRF angle for each wavelength independently. The emission is split into two or four spectral channels to allow for the simultaneous detection of up to four different fluorophores of wide selection and using many possible excitation and photoactivation schemes. We demonstrate the performance of this new setup by conducting two-color alternating excitation single-molecule fluorescence resonance energy transfer (FRET) and a technically challenging four-color FRET experiments on doubly labeled duplex DNA and quadruple-labeled Holliday junction, respectively.  相似文献   

8.
Spectrofluorometric imaging microscopy is demonstrated in a confocal microscope using a supercontinuum laser as an excitation source and a custom‐built prism spectrometer for detection. This microscope system provides confocal imaging with spectrally resolved fluorescence excitation and detection from 450 to 700 nm. The supercontinuum laser provides a broad spectrum light source and is coupled with an acousto‐optic tunable filter to provide continuously tunable fluorescence excitation with a 1‐nm bandwidth. Eight different excitation wavelengths can be simultaneously selected. The prism spectrometer provides spectrally resolved detection with sensitivity comparable to a standard confocal system. This new microscope system enables optimal access to a multitude of fluorophores and provides fluorescence excitation and emission spectra for each location in a 3D confocal image. The speed of the spectral scans is suitable for spectrofluorometric imaging of live cells. Effects of chromatic aberration are modest and do not significantly limit the spatial resolution of the confocal measurements.  相似文献   

9.
Chinese algae fossils can provide unique information about the evolution of the early life. Thin sections of Neoproterozoic algae fossils, from Guizhou, China, were studied by confocal laser scanning microscopy, and algae fossils were fluorescenced at different wavelengths when excited by laser light of 488 nm, 476 nm, and 568 nm wavelength. When illuminated by 488 nm laser light, images of the algae fossils were sharper and better defined than when illuminated by 476 nm and 568 nm laser light. The algae fossils fluoresce at a wide range of emission wavelengths. The three-dimensional images of the fluorescent algae fossils were compared with the transmission images taken by light microscope. We found that the fluorescence image of the confocal laser scanning microscope in a single optical section could pass for the transmission image taken by a light microscope. We collected images at different sample depths and made a three-dimensional reconstruction of the algae fossils. And on the basis of the reconstruction of the three-dimensional fluorescent images, we conclude that the two algae fossils in our present study are red algae.  相似文献   

10.
在激光扫描共聚焦显微成像技术基础上引入了光谱成像技术以便区分生物组织中的不同荧光成分。采用分光棱镜对荧光进行光谱展开,在光谱谱面处设置两个可移动缝片形成出射狭缝,两个步进电机带动安装其上的两个缝片设置系统在整个工作波长(400~700 nm)内的光谱带宽,其最小光谱带宽优于5 nm。用488 nm激光和低压汞灯实际测量了几条谱线对应的狭缝位置并和理论值做了比较,结果显示实际狭缝位置和理论值的差值均小于0.1 mm。在全光谱和50 μm出射狭缝(对应2.5 nm光谱带宽)对老鼠肾脏组织进行了共聚焦光谱成像实验,获得了老鼠肾脏组织中DAPI标定的细胞核图像和Alexa Fluor®488标定的肾脏小球曲管图像,实现了对老鼠肾脏组织不同成分的区分。实验结果表明:提出的系统能够进行共聚焦光谱成像,扩大了共聚焦显微镜的适用范围。  相似文献   

11.
Total internal reflection fluorescence (TIRF) microscopy is finding increasing application for selectively detecting molecules at or near a glass–water surface. As with all fluorescence methods, the efficiency of excitation of a fluorophore is potentially sensitive to the polarization state of the source. In TIRF, s‐polarized excitation produces an evanescent field that is perpendicular to the incident plane (y direction), whereas p‐polarized light generates a more complex pattern but one dominated by a field that is vertical to the surface (z direction). Thus, fluorophores whose absorption dipoles are fixed in the x direction are not favourably aligned for excitation. Here we describe a beam‐splitting prism arrangement that allows excitation by two orthogonal beams, thus giving isotropic excitation in the xy plane with s‐polarized light. With linearly polarized light at the magic angle, near isotropic excitation in three dimensions should be achieved. This prism design should find application in polarized fluorescence microscopy to investigate the rotational motions of macromolecules or to minimize flickering of fluorescence emission arising from molecular rotations in single molecule studies.  相似文献   

12.
Two-photon activation of photoactivatable green fluorescent protein (PA-GFP) provides a unique tool for probing cellular transport processes, because activation is strictly limited to the sub-femtoliter optical volume of the two-photon spot. We demonstrate two-photon activation of PA-GFP immobilized in a gel and freely diffusing within cells and recover a quadratic power dependence. Illumination at 820 nm allows simultaneous activation and fluorescence monitoring by two-photon excitation. Alternatively, we activate PA-GFP using two-photon excitation and monitor the fluorescence of the photoconverted product with one-photon excitation. We probe nucleocytoplasmic transport through the nuclear pore complex of COS-1 cells, by observing the time-dependent fluorescence at various locations within the cell after two-photon activation of PA-GFP in the nucleus and in the cytoplasm. Two-photon activation of a tandem construct of two PA-GFPs showed a markedly slower rate of crossing through the nuclear pore. Analysis based on a restricted diffusion model yields a nuclear pore radius of 4.5 nm, which is in good agreement with previously reported values. This application demonstrates the attractive features of two-photon photoactivation over traditional techniques, such as photobleaching, for studying transport processes in cells.  相似文献   

13.
Confocal imaging of glutathione redox potential in living plant cells   总被引:1,自引:0,他引:1  
Reduction–oxidation-sensitive green fluorescent protein (roGFP1 and roGFP2) were expressed in different sub-cellular compartments of Arabidopsis and tobacco leaves to empirically determine their performance as ratiometric redox sensors for confocal imaging in planta . A lower redox-dependent change in fluorescence in combination with reduced excitation efficiency at 488 nm resulted in a significantly lower dynamic range of roGFP1 than for roGFP2. Nevertheless, when targeted to the cytosol and mitochondria of Arabidopsis leaves both roGFPs consistently indicated redox potentials of about –320 mV in the cytosol and –360 mV in the mitochondria after pH correction for the more alkaline matrix pH. Ratio measurements were consistent throughout the epidermal cell layer, but results might be attenuated deeper within the leaf tissue. Specific interaction of both roGFPs with glutaredoxin in vitro strongly suggests that in situ both variants preferentially act as sensors for the glutathione redox potential. roGFP2 targeted to plastids and peroxisomes in epidermal cells of tobacco leaves was slightly less reduced than in other plasmatic compartments, but still indicated a highly reduced glutathione pool. The only oxidizing compartment was the lumen of the endoplasmic reticulum, in which roGFP2 was almost completely oxidized. In all compartments tested, roGFP2 reversibly responded to perfusion with H2O2 and DTT, further emphasizing that roGFP2 is a reliable probe for dynamic redox imaging in planta . Reliability of roGFP1 measurements might be obscured though in extended time courses as it was observed that intense irradiation of roGFP1 at 405 nm can lead to progressive photoisomerization and thus a redox-independent change of fluorescence excitation ratios.  相似文献   

14.
Huang Z  Chen R  Li Y  Zhuang H  Chen J  Wang L 《Scanning》2008,30(6):443-447
Autofluorescence spectra and optical imaging of Platymonas subcordiformis after irradiation of diode laser were observed via laser scanning confocal microscopy (LSCM). With 488 nm Ar(+) laser excitation, the horizontal and vertical dimensions of a cup-shaped chloroplast of the irradiation group increased about 10% compared with the control group. The fluorescence spectra were similar between irradiation group and control group with a maximum fluorescence band around 682 nm, whereas the former has a higher intensity. Image of a small circular substance with stronger two-photon autofluorescence (TPA) was obtained when using two-photon excitation wavelength of 800 nm in single-channel mode. Further analysis by the 800 nm excitation based on two independent-channels mode showed an emission band of the small circular substance around 376-505 nm, which corresponded to the eyespot of P. subcordiformis. In lambda scanning mode, with two-photon wavelength of 800 nm excitation, six fluorescence peaks that are located at 465, 520, 560, 617, 660 and 680 nm were observed; the fluorescence intensity of the irradiation group was higher than that of the control group, especially at 520, 560 and 617 nm. As a conclusion, diode laser irradiation can promote chloroplast growth of P. subcordiformis cells in the form of expanding area and the increasing content of protein, phospholipids and chlorophyll. LSCM, especially TPA imaging based on femtosecond laser excitation, provides a nondestructive, real-time and accurate method to study changes of living algal cells under laser irradiation and other environmental factors.  相似文献   

15.
Although single-photon fluorescence lifetime imaging microscopy (FLIM) is widely used to image molecular processes using a wide range of excitation wavelengths, the captured emission of this technique is confined to the visible spectrum. Here, we explore the feasibility of utilizing near-infrared (NIR) fluorescent molecular probes with emission >700 nm for FLIM of live cells. The confocal microscope is equipped with a 785 nm laser diode, a red-enhanced photomultiplier tube, and a time-correlated single photon counting card. We demonstrate that our system reports the lifetime distributions of NIR fluorescent dyes, cypate and DTTCI, in cells. In cells labelled separately or jointly with these dyes, NIR FLIM successfully distinguishes their lifetimes, providing a method to sort different cell populations. In addition, lifetime distributions of cells co-incubated with these dyes allow estimate of the dyes' relative concentrations in complex cellular microenvironments. With the heightened interest in fluorescence lifetime-based small animal imaging using NIR fluorophores, this technique further serves as a bridge between in vitro spectroscopic characterization of new fluorophore lifetimes and in vivo tissue imaging.  相似文献   

16.
A theory for multiphoton fluorescence imaging in high aperture scanning optical microscopes employing finite sized detectors is presented. The effect of polarisation of the fluorescent emission on the imaging properties of such microscopes is investigated. The lateral and axial resolutions are calculated for one-, two- and three-photon excitation of p-quaterphenyl for high and low aperture optical systems. Significant improvement in lateral resolution is found to be achieved by employing a confocal pinhole. This improvement increases with the order of the multiphoton process. Simultaneously, it is found that, when the size of the pinhole is reduced to achieve the best possible resolution, the signal-to-noise ratio is not degraded by more than 30%. The degree of optical sectioning achieved is found to improve dramatically with the use of confocal detection. For two- and three-photon excitation axial full width half-maximum improvement of 30% is predicted.  相似文献   

17.
Resilin is a rubber-like protein found in the exoskeleton of arthropods. It often contributes large proportions to the material of certain structures in movement systems. Accordingly, the knowledge of the presence and distribution of resilin is essential for the understanding of the functional morphology of these systems. Because of its specific autofluorescence, resilin can be effectively visualized using fluorescence microscopy. However, the respective excitation maximum is in the UV range, which is not covered by the lasers available in most of the modern commercial confocal laser scanning microscopes. The goal of this study was to test the potential of confocal laser scanning microscopy (CLSM) in combination with a 405 nm laser to visualize and analyse the presence and distribution of resilin in arthropod exoskeletons. The results clearly show that all resilin-dominated structures, which were visualized successfully using wide-field fluorescence microscopy (WFM) and a 'classical' UV excitation, could also be visualized efficiently with the proposed CLSM method. Furthermore, with the application of additional laser lines CLSM turned out to be very appropriate for studying differences in the material composition within arthropod exoskeletons in great detail. As CLSM has several advantages over WFM with respect to detailed morphological imaging, the application of the proposed CLSM method may reveal new information about the micromorphology and material composition of resilin-dominated exoskeleton structures leading to new insights into the functional morphology and biomechanics of arthropods.  相似文献   

18.
Scanning microphotolysis is a method that permits the user to select, within the scanning field of a confocal microscope, areas of arbitrary geometry for photobleaching or photoactivation. Two-photon absorption, by contrast, confers on laser scanning microscopy a true spatial selectivity by restricting excitation to very small focal volumes. In the present study the two methods were combined by complementing a laser scanning microscope with both a fast programmable optical switch and a titan sapphire laser. The efficiency and accuracy of fluorescence photobleaching induced by two-photon absorption were determined using fluorescein-containing polyacrylamide gels. At optimal conditions a single scan was sufficient to reduce the gel fluorescence by ≈40%. Under these conditions the spatial accuracy of photobleaching was 0.5±0.1 μm in the lateral ( x y ) and 3.5±0.5 μm in the axial ( z ) direction, without deconvolution accounting for the optical resolution. Deconvolution improved the accuracy values by ≈30%. The method was applied to write complex three-dimensional patterns into thick gels by successively scanning many closely spaced layers, each according to an individual image mask. Membrane transport was studied in a model tissue consisting of human erythrocyte ghosts carrying large transmembrane pores and packed into three-dimensional arrays. Upon equilibration with a fluorescent transport substrate single ghosts could be selectively photobleached and the influx of fresh transport substrate be monitored. The results suggest that two-photon scanning microphotolysis provides new possibilities for the optical analysis and manipulation of both technical and biological microsystems.  相似文献   

19.
A major problem in microscopic imaging of ex vivo tissue sections stained with fluorescent agents (e.g. antibodies, peptides) is the confounding presence of background tissue autofluorescence. Autofluorescence limits (1) the accuracy of differentiating background signals from single and multiple fluorescence labels and (2) reliable quantification of fluorescent signals. Advanced techniques such as hyperspectral imaging and spectral unmixing can be applied to essentially remove this autofluorescent signal contribution, and this work attempts to quantify the effectiveness of autofluorescence spectral unmixing in a tumour xenograft model. Whole-specimen single-channel fluorescence images were acquired using excitation wavelengths of 488 nm (producing high autofluorescence) and 568 nm (producing negligible autofluorescence). These single-channel data sets are quantified against hyperspectral images acquired at 488 nm using a prototype whole-slide hyperspectral fluorescence scanner developed in our facility. The development and further refinement of this instrument will improve the quantification of weak fluorescent signals in fluorescence microscopy studies of ex vivo tissues in both preclinical and clinical applications.  相似文献   

20.
The use of fast-staining DNA-specific dyes such as DAPI or Hoechst 33342/33258 has been a major problem for confocal scanning laser microscopy (CSLM) studies of intranuclear chromatin organization. Moreover, the availability of a confocal ultraviolet scanning laser microscope configuration, which allows an excitation at wavelengths of 364 nm as well as 488, 514 and 543 nm, is a prerequisite for single as well as multiple fluorescence parameter studies, especially if these studies are concerned with the precise localization of intranuclear signals. Here we report the characteristics and application of a CSLM, which was adapted for UV-excitation and therefore enables comparison of the spatial distribution of several types of signals within one preparation. In addition to multiple-parameter studies, we have also investigated the sensitivity of the system with regard to the identification of the double-stranded DNA of lampbrush chromosome loops in germinal vesicles of amphibian oocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号