首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Madaria AR  Yao M  Chi C  Huang N  Lin C  Li R  Povinelli ML  Dapkus PD  Zhou C 《Nano letters》2012,12(6):2839-2845
Vertically aligned, catalyst-free semiconducting nanowires hold great potential for photovoltaic applications, in which achieving scalable synthesis and optimized optical absorption simultaneously is critical. Here, we report combining nanosphere lithography (NSL) and selected area metal-organic chemical vapor deposition (SA-MOCVD) for the first time for scalable synthesis of vertically aligned gallium arsenide nanowire arrays, and surprisingly, we show that such nanowire arrays with patterning defects due to NSL can be as good as highly ordered nanowire arrays in terms of optical absorption and reflection. Wafer-scale patterning for nanowire synthesis was done using a polystyrene nanosphere template as a mask. Nanowires grown from substrates patterned by NSL show similar structural features to those patterned using electron beam lithography (EBL). Reflection of photons from the NSL-patterned nanowire array was used as a measure of the effect of defects present in the structure. Experimentally, we show that GaAs nanowires as short as 130 nm show reflection of <10% over the visible range of the solar spectrum. Our results indicate that a highly ordered nanowire structure is not necessary: despite the "defects" present in NSL-patterned nanowire arrays, their optical performance is similar to "defect-free" structures patterned by more costly, time-consuming EBL methods. Our scalable approach for synthesis of vertical semiconducting nanowires can have application in high-throughput and low-cost optoelectronic devices, including solar cells.  相似文献   

2.
Long vertically aligned ZnO nanowire arrays were synthesized using an ultra-fast microwave-assisted hydrothermal process. Using this method, we were able to grow ZnO nanowire arrays at an average growth rate as high as 200?nm?min(-1) for maximum microwave power level. This method does not suffer from the growth stoppage problem at long growth times that, according to our investigations, a normal microwave-assisted hydrothermal method suffers from. Longitudinal growth of the nanowire arrays was investigated as a function of microwave power level and growth time using cross-sectional FESEM images of the grown arrays. Effect of seed layer on the alignment of nanowires was also studied. X-ray diffraction analysis confirmed c-axis orientation and single-phase wurtzite structure of the nanowires. J-V curves of the fabricated ZnO nanowire-based mercurochrome-sensitized solar cells indicated that the short-circuit current density is increased with increasing the length of the nanowire array. According to the UV-vis spectra of the dyes detached from the cells, these increments were mainly attributed to the enlarged internal surface area and therefore dye loading enhancement in the lengthened nanowire arrays.  相似文献   

3.
Bottom-up assembly of large-area nanowire resonator arrays   总被引:1,自引:0,他引:1  
Directed-assembly of nanowire-based devices will enable the development of integrated circuits with new functions that extend well beyond mainstream digital logic. For example, nanoelectromechanical resonators are very attractive for chip-based sensor arrays because of their potential for ultrasensitive mass detection. In this letter, we introduce a new bottom-up assembly method to fabricate large-area nanoelectromechanical arrays each having over 2,000 single-nanowire resonators. The nanowires are synthesized and chemically functionalized before they are integrated onto a silicon chip at predetermined locations. Peptide nucleic acid probe molecules attached to the nanowires before assembly maintain their binding selectivity and recognize complementary oligonucleotide targets once the resonator array is assembled. The two types of cantilevered resonators we integrated here using silicon and rhodium nanowires had Q-factors of approximately 4,500 and approximately 1,150, respectively, in vacuum. Taken together, these results show that bottom-up nanowire assembly can offer a practical alternative to top-down fabrication for sensitive chip-based detection.  相似文献   

4.
Innovations in microfabricated analytical devices integrated with microelectronic circuits and biological cells show promising results in detection, diagnosis and analysis. Planar metallic microelectrodes are widely used for the electrical interface with the biological cells. Issues with the current microelectrode array design are the difficulty in selective integration with a cell, the size dependency of its impedance and the large amount of noise in the circuit due to this mismatch. It is quite evident that an approach utilizing nanotechnology can solve some of these problems by yielding efficient electrical interconnections. The design and development of a planar microelectrode array integrated with vertically aligned nanowires for lab-on-achip (LoC) device applications are presented. The nanowire integrated microelectrode arrays for LoC devices show promising results with respect to impedance control due to increased surface area. The authors have fabricated nanowire integrated microelectrode arrays on silicon and flexible polymer substrates using the template method. A high degree of specific growth is achieved by controlling the nanowire synthesis parameters. An attempt has been made to integrate biological cells into the nanowires by culturing endothelial cells onto the microelectrode array.  相似文献   

5.
The electroluminescent properties of InGaN/GaN nanowire-based light emitting diodes (LEDs) are studied at different resolution scales. Axial one-dimensional heterostructures were grown by plasma-assisted molecular beam epitaxy (PAMBE) directly on a silicon (111) substrate and consist of the following sequentially deposited layers: n-type GaN, three undoped InGaN/GaN quantum wells, p-type AlGaN electron blocking layer and p-type GaN. From the macroscopic point of view, the devices emit light in the green spectral range (around 550 nm) under electrical injection. At 100 mA DC current, a 1 mm2 chip that integrates around 10(7) nanowires emits an output power on the order of 10 μW. However, the emission of the nanowire-based LED shows a spotty and polychromatic emission. By using a confocal microscope, we have been able to improve the spatial resolution of the optical characterizations down to the submicrometre scale that can be assessed to a single nanowire. Detailed μ-electroluminescent characterization (emission wavelength and output power) over a representative number of single nanowires provides new insights into the vertically integrated nanowire-based LED operation. By combining both μ-electroluminescent and μ-photoluminescent excitation, we have experimentally shown that electrical injection failure is the major source of losses in these nanowire-based LEDs.  相似文献   

6.
Although ZnO and ZnS are abundant, stable, and environmentally benign, their band gap energies (3.44, 3.72 eV, respectively) are too large for optimal photovoltaic efficiency. By using band-corrected pseudopotential density functional theory calculations, we study how the band gap, optical absorption, and carrier localization can be controlled by forming quantum-well-like and nanowire-based heterostructures of ZnO/ZnS and ZnO/ZnTe. In the case of ZnO/ZnS core/shell nanowires, which can be synthesized using existing methods, we obtain a band gap of 2.07 eV, which corresponds to a Shockley-Quiesser efficiency limit of 23%. On the basis of these nanowire results, we propose that ZnO/ZnS core/shell nanowires can be used as photovoltaic devices with organic polymer semiconductors as p-channel contacts.  相似文献   

7.
Wu H  Yang Y  Oh E  Lai F  Yu D 《Nanotechnology》2012,23(26):265602
We report chemical-vapor-deposition (CVD) synthesis of high-density lead sulfide (PbS) nanowire arrays and nano pine trees directly on Ti thin films, and the fabrication of photovoltaic devices based upon the PbS nanowires. The as-grown nanowire arrays are largely vertically aligned to the substrates and are uniformly distributed over a relatively large area. Field effect transistors incorporating single PbS nanowires show p-type conduction and high mobilities. These catalytic metal thin films also serve as photocarrier collection electrodes and greatly facilitate device integration. For the first time, we have fabricated Schottky junction photovoltaic devices incorporating PbS nanowires, which demonstrate the capability of converting near-infrared light to electricity. The PbS nanowire devices are stable in air and their external quantum efficiency shows no significant decrease over a period of 3?months in air. We have also compared the photocurrent direction and quantum efficiencies of photovoltaic devices made with different metal electrodes, and the results are explained by band bending at the Schottky junction. Our research shows that PbS nanowires are promising building blocks for collecting near-infrared solar energy.  相似文献   

8.
Nanowires are arguably the most studied nanomaterial model to make functional devices and arrays. Although there is remarkable maturity in the chemical synthesis of complex nanowire structures, their integration and interfacing to macro systems with high yields and repeatability still require elaborate aligning, positioning and interfacing and post-synthesis techniques. Top-down fabrication methods for nanowire production, such as lithography and electrospinning, have not enjoyed comparable growth. Here we report a new thermal size-reduction process to produce well-ordered, globally oriented, indefinitely long nanowire and nanotube arrays with different materials. The new technique involves iterative co-drawing of hermetically sealed multimaterials in compatible polymer matrices similar to fibre drawing. Globally oriented, endlessly parallel, axially and radially uniform semiconducting and piezoelectric nanowire and nanotube arrays hundreds of metres long, with nanowire diameters less than 15 nm, are obtained. The resulting nanostructures are sealed inside a flexible substrate, facilitating the handling of and electrical contacting to the nanowires. Inexpensive, high-throughput, multimaterial nanowire arrays pave the way for applications including nanowire-based large-area flexible sensor platforms, phase-changememory, nanostructure-enhanced photovoltaics, semiconductor nanophotonics, dielectric metamaterials,linear and nonlinear photonics and nanowire-enabled high-performance composites.  相似文献   

9.
Wan Q  Dattoli EN  Fung WY  Guo W  Chen Y  Pan X  Lu W 《Nano letters》2006,6(12):2909-2915
We report the growth and characterization of single-crystalline Sn-doped In2O3 (ITO) and Mo-doped In2O3 (IMO) nanowires. Epitaxial growth of vertically aligned ITO nanowire arrays was achieved on ITO/yttria-stabilized zirconia (YSZ) substrates. Optical transmittance and electrical transport measurements show that these nanowires are high-performance transparent metallic conductors with transmittance of approximately 85% in the visible range, resistivities as low as 6.29 x 10(-5) Omega x cm and failure-current densities as high as 3.1 x 10(7) A/cm2. Such nanowires will be suitable in a wide range of applications including organic light-emitting devices, solar cells, and field emitters. In addition, we demonstrate the growth of branched nanowire structures in which semiconducting In2O3 nanowire arrays with variable densities were grown epitaxially on metallic ITO nanowire backbones.  相似文献   

10.
We experimentally investigate the optical properties of layers of InP, Si, and GaP nanowires, relevant for applications in solar cells. The nanowires are strongly photonic, resulting in a significant coupling mismatch with incident light due to multiple scattering. We identify a design principle for the effective suppression of reflective losses, based on the ratio of the nondiffusive absorption and diffusive scattering lengths. Using this principle, we demonstrate successful suppression of the hemispherical diffuse reflectance of InP nanowires to below that of the corresponding transparent effective medium. The design of light scattering in nanowire materials is of large importance for optimization of the external efficiency of nanowire-based photovoltaic devices.  相似文献   

11.
The incorporation of Au during vapor-liquid-solid nanowire growth might inherently limit the performance of nanowire-based devices. Here, we assess the material quality of Au-assisted and Au-free grown GaAs/(Al,Ga)As core-shell nanowires using photoluminescence spectroscopy. We show that at room temperature, the internal quantum efficiency is systematically much lower for the Au-assisted nanowires than for the Au-free ones. In contrast, the optoelectronic material quality of the latter is comparable to that of state-of-the-art planar double heterostructures.  相似文献   

12.
A solar cell based on a hybrid nanowire–film architecture consisting of a vertically aligned array of InGaN/GaN multi-quantum well core–shell nanowires which are electrically connected by a coalesced p-InGaN canopy layer is demonstrated. This unique hybrid structure allows for standard planar device processing, solving a key challenge with nanowire device integration, while enabling various advantages by the nanowire absorbing region such as higher indium composition InGaN layers by elastic strain relief, more efficient carrier collection in thinner layers, and enhanced light trapping from nano-scale optical index changes. This hybrid structure is fabricated into working solar cells exhibiting photoresponse out to 2.1 eV and short-circuit current densities of ~1 mA cm(-2) under 1 sun AM1.5G. This proof-of-concept nanowire-based device demonstrates a route forward for high-efficiency III-nitride solar cells.  相似文献   

13.
We demonstrate that arrays of nanowires of conjugated polymers can be easily produced by a simple embossing protocol, compatible with very large scale integration technology. The embossing process is shown to have the supplementary virtue to increase the internal degree of order of the nanowires, significantly enhancing their performance. This is applied to the fabrication of nanowire-based devices consisting of a liquid crystalline light-emitting polymer, of a liquid crystalline semiconducting polymer, and of an amorphous conducting polymer, illustrating the versatility and wide applicability of the method.  相似文献   

14.
The integration of nanowires and nanotubes into electrical test structures to investigate their nanoelectronic transport properties is a significant challenge. Here, we present a single nanowire manipulation system to precisely maneuver and align individual nanowires. We show that a single nanowire can be picked up and transferred to a predefined location by electrostatic force. Compatible fabrication processes have been developed to simultaneously pattern multiple aligned nanowires by using one level of photolithography. In addition, we have fabricated and characterized representative devices and test structures including nanoelectromechanical switches with large on/off current ratios, bottom-gated silicon nanowire field-effect transistors, and both transfer-length-method and Kelvin test structures  相似文献   

15.
Ultradense memory and logic circuits fabricated at local densities exceeding 100 × 10(9) cross-points per cm(2) have recently been demonstrated with nanowire crossbar arrays. Practical implementation of such nanocrossbar circuitry, however, requires effective demultiplexing to solve the problem of electrically addressing individual nanowires within an array. Importantly, such a demultiplexer (demux) must also be tolerant of the potentially high defect rates inherent to nanoscale circuit fabrication. We have built a 50?nm half-pitch nanocrossbar circuit using imprint lithography and configured it for a demux application. Utilizing a class of Hamming codes in the hardware design, we experimentally demonstrate defect-tolerant demux operations on a 12 × 8 nanocrossbar array with up to two stuck-open defects per addressed line.  相似文献   

16.
Jung YS  Jung W  Tuller HL  Ross CA 《Nano letters》2008,8(11):3776-3780
Nanostructured conjugated organic thin films are essential building blocks for highly integrated organic devices. We demonstrate the large-area fabrication of an array of well-ordered 15 nm wide conducting polymer nanowires by using an etch mask consisting of self-assembled patterns of cylinder-forming poly(styrene-b-dimethylsiloxane) diblock copolymer confined in topographic templates. The poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) nanowires operated as an ethanol vapor sensor, suggesting that the electronic properties of the organic film were preserved during the patterning processes. The higher sensitivity to ethanol vapor, compared to an unpatterned film with the same thickness, was attributed to the enhanced surface-to-volume ratio of the nanowire array.  相似文献   

17.
In this paper we introduce a new paradigm for nanowire growth that explains the unwanted appearance of parasitic nonvertical nanowires. With a crystal structure polarization analysis of the initial stages of GaAs nanowire growth on Si substrates, we demonstrate that secondary seeds form due to a three-dimensional twinning phenomenon. We derive the geometrical rules that underlie the multiple growth directions observed experimentally. These rules help optimizing nanowire array devices such as solar or water splitting cells or of more complex hierarchical branched nanowire devices.  相似文献   

18.
Strain-controlled growth of nanowires within thin-film cracks   总被引:1,自引:0,他引:1  
There is continued interest in finding quicker and simpler ways to fabricate nanowires, even though research groups have been investigating possibilities for the past decade. There are two reasons for this interest: first, nanowires have unusual properties-for example, they show quantum-mechanical confinement effects, they have a very high surface-to-volume ratio, enabling them to be used as sensors, and they have the ability to connect to individual molecules. Second, no simple method has yet been found to fabricate nanowires over large areas in arbitrary material combinations. Here we describe an approach to the generation of well-defined nanowire network structures on almost any solid material, up to macroscopic sample sizes. We form the nanowires within cracks in a thin film. Such cracks have a number of properties that make them attractive as templates for nanowire formation: they are straight, scalable down to nanometre size, and can be aligned (by using microstructure to give crack alignment via strain). We demonstrate the production of nanowires with diameter <16 nm, both singly and as networks; we have also produced aligned patterns of nanowires, and nanowires with individual contacts.  相似文献   

19.
Semiconductor nanowire devices have several properties which match future requirements of scaling down the size of electronics. In typical microelectronics production, a number of microstructures are aligned precisely on top of each other during the fabrication process. In the case of nanowires, this mandatory condition is still hard to achieve. A technological breakthrough is needed to accurately place nanowires at any specific position and then form devices in mass production. In this article, an upscalable process combining conventional micromachining with phase shift lithography will be demonstrated as a suitable tool for nanowire device technology. Vertical Si and ZnO nanowires are demonstrated on very large (several cm(2)) areas. We demonstrate how the nanowire positions can be controlled, and the resulting nanowires are used for device fabrication. As an example Si/ZnO heterojunction diode arrays are fabricated. The electrical characterization of the produced devices has also been performed to confirm the functionality of the fabricated diodes.  相似文献   

20.
Hochbaum AI  Fan R  He R  Yang P 《Nano letters》2005,5(3):457-460
Silicon nanowires were synthesized, in a controlled manner, for their practical integration into devices. Gold colloids were used for nanowire synthesis by the vapor-liquid-solid growth mechanism. Using SiCl4 as the precursor gas in a chemical vapor deposition system, nanowire arrays were grown vertically aligned with respect to the substrate. By manipulating the colloid deposition on the substrate, highly controlled growth of aligned silicon nanowires was achieved. Nanowire arrays were synthesized with narrow size distributions dictated by the seeding colloids and with average diameters down to 39 nm. The density of wire growth was successfully varied from approximately 0.1-1.8 wires/microm2. Patterned deposition of the colloids led to confinement of the vertical nanowire growth to selected regions. In addition, Si nanowires were grown directly into microchannels to demonstrate the flexibility of the deposition technique. By controlling various aspects of nanowire growth, these methods will enable their efficient and economical incorporation into devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号