首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The in vivo glucose recovery of subcutaneously implanted nitric oxide (NO)-releasing microdialysis probes was evaluated in a rat model using saturated NO solutions to steadily release NO. Such methodology resulted in a constant NO flux of 162 pmol cm(-2) s(-1) from the probe membrane over 8 h of perfusion daily. The in vivo effects of enhanced localized NO were evaluated by monitoring glucose recovery over a 14 day period, with histological analysis thereafter. A difference in glucose recovery was observed starting at 7 days for probes releasing NO relative to controls. Histological analysis at 14 days revealed lessened inflammatory cell density at the probe surface and decreased capsule thickness. Collectively, the results suggest that intermittent sustained NO release from implant surfaces may improve glucose diffusion for subcutaneously implanted sensors by mitigating the foreign body reaction.  相似文献   

2.
Interest in elucidating the mechanisms of action of various classes of anticancer agents and exploring the pathways of the induced-nitric oxide (NO) release provides an impetus to conceive a better designed approach to locally detect NO in tumors, in vivo. We report here on the first use of an electrochemical sensor that allows the in vivo detection of NO in tumor-bearing mice. In a first step, we performed the electrochemical characterization of a stable electroactive probe, K4Fe(CN)6, directly injected into the liquid microenvironment especially created around the electrode in the tumor. Second, the ability of the inserted electrode system to detect the presence of NO itself in the tumoral tissue was achieved by using the chemically modified Pt/Ir electrode as NO sensor and two NO donor molecules: diethylammonium (Z)-1-(N,N-diethylamino)diazen-1-ium 1,2-diolate (DEA-NONOate) and (Z)-1-[N-(2-aminopropyl)-N-(2-ammonio propyl)amino]diazen-1-ium 1,2-diolate (PAPA-NONOate). These two NO donor molecules allowed proving the electrochemical detection of (i) directly injected exogenous NO phosphate buffer solution into the tumor (decomposed DEA-NONOate) and (ii) biomimetically induced endogeneous release of NO in the tumoral tissue, upon injection of PAPA-NONOate into the tumor. This approach could be applied to the in vivo study of candidate anticancer drugs acting on the NO pathways.  相似文献   

3.
论述了晶体材料,重点是固体氧化物燃料电池组件的导电机理,介绍了影响电导率的几个因素。针对不同的电解质和电极材料,讨论了几种常用的测量电解质和电极总电导率、电子电导率以及离子电导率的方法,并指出在测量中需要注意的问题。  相似文献   

4.
An amperometric fluorinated xerogel-derived nitric oxide (NO) microelectrode is described. A range of fluorine-modified xerogel polymers were synthesized via the cohydrolysis and condensation of alkylalkoxy- and fluoroalkoxysilanes. Such polymers were evaluated as NO sensor membranes to identify the optimum composition for maximizing NO permeability while providing sufficient selectivity for NO in the presence of common interfering species. By taking advantage of both the versatility of sol-gel chemistry and the "poly(tetrafluoroethylene)-like" high NO permselective properties of the xerogels, the performance of the fluorinated xerogel-derived sensors was excellent, surpassing all miniaturized NO sensors reported to date. In contrast to previous electrochemical NO sensor designs, xerogel-based NO microsensors were fabricated using a simple, reliable dip-coating procedure. An optimal permselective membrane was achieved by synthesizing xerogels of methyltrimethoxysilane (MTMOS) and 20% (heptadecafluoro-1,1,2,2-tetrahydrodecyl)trimethoxysilane (17FTMS, balance MTMOS) under acid-catalyzed conditions. The resulting NO microelectrode had a conical tip of approximately 20 microm in diameter and approximately 55 microm in length and exhibited sensitivities of 7.91 pA x nM (-1) from 0.2 to 3.0 nM (R (2) = 0.9947) and 7.60 nA x microM (-1) from 0.5 to 4.0 microM ( R (2) = 0.9999), detection limit of 83 pM (S/ N = 3), response time ( t 95%) of <3 s, and selectivity (log K NO, j (amp)) of -5.74, <-6, <-6, <-6, <-6, -5.84, and -1.33 for j = nitrite, ascorbic acid, uric acid, acetaminophen, dopamine, ammonia/ammonium, and carbon monoxide. In addition, the sensor proved functional up to 20 d, maintaining >or=90% of the sensor's initial sensitivity without serious deterioration in selectivity.  相似文献   

5.
The aim of this work is the development of a NO sensor for asthma control and medication monitoring. The transducer is a Molecular Controlled Semiconductor Resistor (MOCSER), which is a GaAs based heterostructure. Protoporphyrins IX, containing carboxylic groups to chemisorb on GaAs, were used as sensing molecules. Characterization of the protoporphyrin monolayers was held using Attenuated Total Reflection in Multiple Internal Reflection (ATR/MIR), High Resolution Electron Energy Loss Spectroscopy (HREELS) in the vibrational and electronic domain and X-ray Photoelectron Spectroscopy (XPS). Degreasing and etching of the GaAs substrates were accomplished before adsorption. Interfacial bonding investigated by ATR/MIR shows that protoporphyrin adsorbs to the GaAs (100) through a unidentate complex and remains mostly vertically oriented. The electronic domain of the HREELS spectra exhibits the Q band with α and β components on the same position as in the UV/Vis spectrum. Soret band is blue shifted showing a face to face stacking of the protoporphyrin molecules on the GaAs substrates. XPS spectra reveal the presence of Cobalt in monolayers prepared with 8 × 10 5 M CoPP solutions. Kinetics is best fitted by an Elovich equation, showing some hindrance due to the previous adsorbed molecules. Thickness found from XPS data ranges from 1.3 to 1.5 nm, which fits with the molecular dimensions. Using the GaAs preparation methods developed here, an NO sensor prototype was assembled and tested for NO sensitivity and repeatability. Relative to NO, tests reveal a good sensitivity between 1.6 and 200 ppb. NO sensitivity was also measured towards CO, CO2 and O2. Pure nitrogen sweeps NO from the porphyrin layer, opening the possibility of the sensor reutilization.  相似文献   

6.
Ruthenium metal is an effective catalyst for the reduction of NO with H2 and CO, but is volatile as RuO4 in oxidizing atmosphere. Ru ions in the B sites of the perovskite-like ruthenates and manganites ABO3 (A is La, Pb, Sr, K and B is Ru or Mn + up to 10 at % Ru) are shown to be very active for NO reduction. Losses of Ru by volatilization are substantially reduced. Ruthenates and Ru ions diluted in AMnO3 have similar activities. The latter show lower NH3 production. Substitution of 5% of the B-sites with Ni further increases the activity, but also the NH3 yield. The mechanism of the NO reduction is discussed.  相似文献   

7.
The present status and prospects for further development of reduced or indium-free transparent conducting oxide (TCO) materials for use in practical thin-film transparent electrode applications such as liquid crystal displays are presented in this paper: reduced-indium TCO materials such as ZnO-In2O3, In2O3-SnO2 and Zn-In-Sn-O multicomponent oxides and indium-free materials such as Al- and Ga-doped ZnO (AZO and GZO). In particular, AZO thin films, with source materials that are inexpensive and non-toxic, are the best candidates. The current problems associated with substituting AZO or GZO for ITO, besides their stability in oxidizing environments as well as the non-uniform distribution of resistivity resulting from dc magnetron sputtering deposition, can be resolved. Current developments associated with overcoming the remaining problems are also presented: newly developed AZO thin-film deposition techniques that reduce resistivity as well as improve the resistivity distribution uniformity using high-rate dc magnetron sputtering depositions incorporating radio frequency power. In addition, stability tests of resistivity in TCO thin films evaluated in air at 90% relative humidity and 60 °C have demonstrated that sufficiently moisture-resistant AZO thin films can be produced at a substrate temperature below 200 °C when the film thickness was approximately 200 nm. However, improving the stability of AZO and GZO films with a thickness below 100 nm remains a problem.  相似文献   

8.
超级电容器Mn-Pb纳米复合电极材料的电化学性能研究   总被引:2,自引:0,他引:2  
利用低温固相反应法制备了Mn-Pb复合氧化物超级电容器电极材料.采用XRD、TEM、循环伏安和恒流充放电法对电极材料的形貌和结构特点以及电化学性能进行了测试分析.结果表明,复合氧化物的粒径均为纳米尺寸,呈无定型结构.复合氧化物在1mol/L Na2SO4中,电位窗口为-0.2~0.9(V vs.SCE)范围内具有典型的电容特征.纳米氧化物电极比容量随放电电流的增大而减小.当放电电流为2mA时,Mn-Pb复合氧化物电极的比容量为180.5F/g.  相似文献   

9.
An amperometric sol-gel derived nitric oxide microsensor is described. Several silicon-based xerogel membranes are evaluated to identify the optimum composition for maximizing NO permeability while providing sufficient selectivity for NO in the presence of common interfering species. Xerogel permeability and selectivity are further manipulated as a function of reaction/processing conditions. In addition, the effects of incorporating Nafion into the xerogel matrix on sensor performance and the stability of the ensuing xerogel/Nafion hybrid film are evaluated. The optimal permselective membrane is achieved by catalyzing polycondensation of the xerogel composed of methyltrimethoxysilane and (aminoethylaminomethyl)phenethyltrimethoxysilane and Nafion with NO gas. The resulting NO microsensor exhibits a sensitivity of 0.17 +/-0.02 pA/nM (from 25 to 800 nM, r = 0.9991), detection limit of 25 nM (S/N = 3), response time of 9 s (t(95%), a NO concentration change from 400 to 500 nM), selectivity (log K(NOj) amp) of -5.8, <-6, <-6, and <-6 for j = nitrite, ascorbic acid, uric acid, and acetaminophen, and a lifetime of 8 d (82% of initial sensitivity without serious deterioration in selectivity).  相似文献   

10.
An indirect method for monitoring nitric oxide (NO) by determining nitrate and nitrite using microchip capillary electrophoresis (CE) with electrochemical (EC) detection has been developed. This method combines determination of nitrite by direct amperometric detection following a microchip-based CE separation and conversion of nitrate to nitrite by chemical reduction using Cu-coated Cd granules. The amount of nitrate is quantified by calculating the difference in the amount of nitrite in the sample before and after the reduction of nitrate. Optimization of the separation, injection, detection, and reduction reaction conditions, as well as studies involving integration of the reduction reaction onto the microchip, are described. It was found that nitrite can be separated and detected in approximately 45 s by microchip CEEC. The reduction reaction was successfully integrated on-chip and carried out in approximately 1 min following activation of the Cd granules. The usefulness of this device was demonstrated by monitoring the amount of nitrate and nitrite produced from 3-morpholinosydnonimine, a NO-releasing compound.  相似文献   

11.
12.
二氧化锡电极的研究及其发展   总被引:6,自引:0,他引:6  
随着玻璃电熔技术的快速发展,玻璃电熔炉对二氧化锡电极的电极要求越来越高,从早期的致密度到后来的电学性能,近期,随着陶瓷增韧方面的发展,对其力学性能特别是强韧性提出了新的要求.通过对二氧化锡电极研究的全面介绍,指出其最新发展及今后的发展方向.  相似文献   

13.
Jo A  Do H  Jhon GJ  Suh M  Lee Y 《Analytical chemistry》2011,83(21):8314-8319
As gaseous nitric oxide (NO), a critical and multifaceted biomarker, diffuses easily once released, identifying the precise sources of NO release is a challenge. This study developed a new technique for real-time in vivo direct NO imaging by coupling an amperometric NO nanosensor with scanning electrochemical microscopy. This technique provides three-dimensional information of the NO releasing sites in an intact living mouse brain with high sensitivity and spatial resolution. Immunohistochemical analysis was carried out to confirm the anatomical reliability of the acquired electrochemical NO image. The real-time NO imaging results were well matched with the corresponding immunohistochemical analysis of neuronal NO synthase immunoreactive (nNOS-IR) cells, i.e., NO releasing sites in a living brain. The imaged NO local concentrations were confirmed to be closely related to the location in depth, the size of the nNOS-IR cell, and the intensity of nNOS immunoreactivity. This paper demonstrates the first direct electrochemical NO imaging of a living brain.  相似文献   

14.
Nanostructured nickel oxide (NiO) electrode has been prepared using electrochemical work station operated on galvanostatic mode in supercapacitor application. Crystalline cubic structure and nanoplate-type of morphology of synthesized NiO electrode was confirmed from X-ray diffraction and scanning electron microscopy analysis respectively. The wettability study was tested by contact angle measurement, which reveals hydrophilic nature of NiO electrode with contact angle of 59°. The presence of nickel and oxygen characteristic bands in EDAX and XPS spectrum has corroborated the NiO formation. The supercapacitive properties of NiO electrode were tested by cyclic voltammogram (CV) in 1 M aqueous Na2SO4, KOH, NaOH electrolytes within the potential range of ??1.1 to 0.9 V, 0 to 0.4 V and ??1.2 to 0.4 respectively. The CV study demonstrates maximum specific capacitance of 481.16 Fg??1 for 1 M Na2SO4. The obtained specific power, specific energy and coulombic efficiency values of NiO electrode are 19.48 kW kg??1, 60.12 Whkg??1, and 92.31%, respectively. In the meantime it exhibited excellent cycle life time with 92.3% specific capacitance kept after 1000 cycles. These results imply that NiO electrode is promising candidate for upcoming thin film supercapacitors and other microelectronic constructions.  相似文献   

15.
A ternary thin film electrode was created by coating manganese oxide onto a network composed of single-walled carbon nanotubes and single-walled carbon nanohorns. The electrode exhibited a porous structure, which is a promising architecture for supercapacitors applications. The maximum specific capacitances of 357 F/g for total electrode at 1 A/g were achieved in 0.1 M Na(2)SO(4) aqueous solution.  相似文献   

16.
In this paper, we report on the first use of an amperometric fluidic microchip array for the examination of nitric oxide in solution. The array chip is composed of 36 working platinum electrodes on a glass substrate. The electrodes have a diameter of 50 μm and are separated by 500 μm. The array chip is integrated within a flowing cell to obtain a fluidic-type sensing device. Two preliminary tests were performed. The first one consisted in assessing the fluidic set-up by using potassium ferrocyanide as test analyte. The second test was aimed at achieving the modification of the surface of the working electrodes by electrodepositing nickel tetrasulfonated phthalocyanine and Nafion® layers to show that the fluidic sensing device can be adapted to the analysis of nitric oxide in solution.  相似文献   

17.
Nitric oxide (NO) is recognized as one of the major immune system agents involved in the pathogenesis and control of various diseases that may benefit from novel drug development, by exploiting NO signaling pathways and targets. This calls for detection of both intracellular levels of NO and expression of its synthesizing enzymes (NOS) in individual, intact, living cells. Such measurements are challenging, however, due to short half-life, low and fluctuating concentrations of NO, cellular heterogeneity, and inability to trace the same cells over time. The current study presents a device and methodology for correlative analysis of NO generation rates and NOS levels in the same individual cells, utilizing fluorescent imaging followed by immunohistochemistry (IHC). U937 promonocyte cell populations demonstrated significant heterogeneity in their baseline levels, in NO-generation kinetics, and in their response rates to stimuli. Individual cell analysis exposed cell subgroups which showed enhanced NO production upon stimulation, concomitantly with significant up-regulation of inducible NOS (iNOS) levels. Exogenous NO modulated the expression of iNOS in nondifferentiated cells within 1 h, in a dose-dependent manner, while treatment with lysophosphatidylcholine (LPC) enhanced the expression of iNOS, demonstrating a nondependence on NO production.  相似文献   

18.
The development and in vivo analytical performance of a nitric oxide (NO)-releasing amperometric oxygen sensor with greatly enhanced thromboresistivity are reported. Gas permeable coatings formulated with cross-linked silicone rubber (SR) containing NO-generating compounds (diazeniumdiolates) are shown to release NO for extended periods of time (> 20 h) while reducing platelet adhesion and activation. Oxygen-sensing catheters prepared by dip-coating the NO-releasing films over the outer SR tubes of the implantable devices display similar analytical response properties in vitro (sensitivity, selectivity, response times) when compared to analogous sensors prepared without the NO release coatings. Superior analytical accuracy (relative to blood PO2 values measured in vitro) and greatly reduced thrombus formation on the outer surface of the sensors are observed in vivo (in canine model) with the NO release PO2 sensors compared to control sensors (without NO release) implanted simultaneously within the same animals. Based on these preliminary studies, the use of NO release polymers to fabricate catheter-style chemical sensors may be a potential solution to lingering biocompatibility and concomitant performance problems encountered when attempting to employ such devices for continuous intravascular measurements of blood gases and electrolytes.  相似文献   

19.
Xi Chen 《Thin solid films》2009,517(8):2787-1224
Polyacrylamide (PAM), sodium dodecyl sulfate (SDS) and cytochrome c (Cyt c) were immobilized on the surface of a glass carbon electrode (GCE), respectively, to form a Cyt c /SDS/PAM/GCE. The modified electrode was characterized with the electrochemical impedance. The direct electrochemical behaviors of Cyt c on SDS/PAM/GCE were obtained by using cyclic voltammetry. A pair of well-defined and reversible redox peaks could be observed in a 0.10 M pH 7.0 phosphate buffer solution. The anodic and cathodic peak potentials of Cyt c were at 0.051 V and − 0.003 V (vs. Ag/AgCl), respectively. The Cyt c on SDS/PAM/GCE exhibited well electrocatalytic activity to reduction of nitric oxide. The relative electrochemical parameters were obtained. The resulted electrode displayed a rapid amperometric response to the reduction of nitric oxide. The catalytic current is linear to the nitric oxide concentration in the range of 8.0 × 10− 7 M to 9.5 × 10− 5 M and the detection limit was 1.0 × 10− 7 M (Signal/Noise = 3). The proposed biosensor could be used to detect quantitatively nitric oxide.  相似文献   

20.
Nanostructured cerium oxide (CeO2) thin films were deposited on transparent conducting oxide (TCO) substrate using spray pyrolysis technique with cerium nitrate salt, Ce(NO3)3·6H2O as precursor. Fluorine doped cadmium oxide (CdO:F) thin film prepared using spray pyrolysis technique acts as the TCO film and hence the bare electrode. The structural, morphological and elemental characterizations of the films were carried out using X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and energy dispersive X-ray analysis (EDX) respectively. The diffraction peak positions in XRD confirmed the formation of highly crystalline ceria with cubic structure and FE-SEM images showed uniform adherent films with granular morphology. The band gaps of CeO2 and TCO were found to be 3.2 eV and 2.6 eV respectively. Lipase enzyme was physisorbed on the surface of CeO2/TCO film to form the lipase/nano-CeO2/TCO bioelectrode. Sensing studies were carried out using cyclic voltammetry and amperometry, with lipase/nano-CeO2/TCO as working electrode and tributyrin as substrate. The mediator-free biosensor with nanointerface exhibited excellent linearity (0.33–1.98 mM) with a lowest detection limit of 2 μM with sharp response time of 5 s and a shelf life of about 6 weeks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号