首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
采用邻苯二甲酸酯类为内给电子体,制备了MgCl_2/SiO_2复合载体负载的Ziegler-Natta催化剂,考察了不同聚合条件、MgCl_2和SiO_2质量比、内给电子体结构对复合载体催化剂催化1-丁烯聚合的影响。结果表明,在三乙基铝(AlEt3)为助催化剂、铝钛物质的量比为200、聚合压力为0.10 MPa、聚合温度为30℃、氢气4 mL、聚合时间为2h时,催化剂活性较高,而外给电子体甲基环己基二甲氧基硅烷(CHMMS)加入聚合体系后,催化剂活性下降,但聚合产物等规度提高,当CHMMS与铝的物质的量比为0.033时,聚合产物的等规度最高为95.4%,复合载体催化剂中SiO_2比例增加,活性下降,邻苯二甲酸二异丁酯作为内给电子体更有利于聚丁烯-1等规度的提高。  相似文献   

2.
采用9,9-双(甲氧基甲基)芴为内给电子体,制备了高效新型负载型硅/镁复合Ziegler-Natta催化剂。考察了助催化剂烷基铝用量、聚合温度、外给电子体种类及用量,以及H2加入量等对该催化剂催化1-丁烯聚合活性及产品性能的影响。结果表明:当催化剂复合载体中镁的质量分数为15.0%,n(Al)∶n(Ti)为30,反应温度为30℃时,催化剂活性达最大,为76.9 g/(g·h);当外给电子体二环戊基二甲氧基硅烷与Ti的摩尔比为4时,聚1-丁烯等规指数最大,为97.8%;当n(Si)∶n(Ti)为1,H_2用量为2 mL时,催化剂活性为65.2 g/(g·h),显示出很好的氢调性能。  相似文献   

3.
用MgCl2和聚对苯二甲酸乙二酯(PET)制备了一种新型复合载体,负载钛后应用于丙烯催化聚合。考察了聚合温度、助催化剂用量、氢气加入量及外给电子体种类等对催化剂和产物性能的影响。聚合温度为70℃、n(Al)/n(Ti)为200、氢气加入量为1L,采用环己基甲基二甲氧基硅烷作为外给电子体时,催化剂具有较高的催化活性,同时聚丙烯具有较高的等规指数,相对分子质量分布宽。  相似文献   

4.
以Al(i-Bu)3(简称Al)为助催化剂,采用含有内给电子体的负载钛催化剂(简称Ti)体系催化1-丁烯(Bt)本体聚合,合成了聚1-丁烯热塑性弹性体(PB-TPE),考察了Al/Ti(摩尔比)、聚合温度对转化率、产物全同结构含量和力学性能的影响,研究了产物的结晶行为和微观结构。结果表明,随着Al/Ti的增加,聚合产物的全同结构含量先升高后降低,当Ti/Bt(摩尔比)为3×10-5、Al/Ti为400时,全同结构质量分数可达到80%;随聚合温度的升高单体的转化率增大,在40℃时,转化率达86%,但全同结构含量明显降低。PB-TPE的玻璃化转变温度为-23.10℃,熔点为111.28℃,结晶度为29%。采用含内给电子体的Ti合成的PB-TPE的全同结构含量和结晶度较不含内给电子体的Ti合成的PB-TPE高,从而使其拉伸强度达14MPa。  相似文献   

5.
采用实验室自制的两种复合型氧基硅烷内给电子体:二甲基二(2-酚基乙氧基)硅烷(IED1)和二甲基二(2-氯乙氧基)硅烷(IED2),将两种内给电子体配置Ziegler-Natta催化剂并进行乙烯的催化聚合以制备超高分子量聚乙烯(PE-UHMW)。考察了两种内给电子体加入对Ziegler-Natta催化剂的载钛量、催化剂活性、催化剂的微观形貌及聚合物分子量等因素的影响,并考察催化剂加入量、聚合温度、聚合时间、助催化剂加入量对PE-UHMW聚合效果的影响。由于IED1结构中含有4个含氧基团,电子云密度高于IED2,因此IED1对催化剂活性以及聚合物分子量影响较大。最终确定PE-UHMW聚合工艺条件为:以IED1为内给电子体,催化剂加入量为12 mg/L,IED1与载体氯化镁的物质的量之比为1∶4,聚合温度为75℃,聚合时间为2 h,催化剂中Al/Ti物质的量之比为80。在此工艺条件下催化剂的催化效率为17.1 kg/(g·h),催化剂载钛量为5.8%,PE-UHMW堆密度为0.3 g/cm3,PE-UHMW分子量为4.0×106。  相似文献   

6.
聚丙烯催化剂聚合性能的研究   总被引:1,自引:0,他引:1  
采用磷酸酯类作内给电子体,MgCl2作载体合成球形聚丙烯催化剂,以三乙基铝为助催化剂,甲基环己基二甲氧基硅烷为外给电子体,研究液相本体法聚合条件对催化剂性能的影响,并对聚合物进行了分析.结果表明:该催化体系最佳聚合条件为搅拌转速150 r/min,反应温度75℃,n(Al)/(Ti)为600,n(Si)/n(Ti)为30.在此条件下,催化体系为长效型,催化剂活性高、氢调敏感性好,聚合物等规指数高、细粉少.  相似文献   

7.
研究了4种Ziegler-Natta催化剂在淤浆聚合条件下,助催化剂和外给电子体对其催化丙烯聚合反应动力学行为的影响。结果表明:4种催化剂都有一个短暂的活性中心形成阶段,聚合动力学曲线均为上升-衰减型;4种催化剂活性均随烷基铝用量的增加而降低;所制聚丙烯的等规指数均随烷基铝用量的增加而降低,随外给电子体用量的增加而升高;助催化剂为三乙基铝[n(Al)∶n(Ti)=100],外给电子体为二环戊基二甲氧基硅烷[n(Si)∶n(Ti)=5]时,4种催化剂都具有较高的活性及较慢的聚合反应速率衰减;用催化剂4制备的聚丙烯的等规指数受助催化剂及外给电子体的影响较小。  相似文献   

8.
利用异丁基三乙氧基硅烷作为外给电子体与N-Ⅲ催化剂组成高活性及高氢调敏感性催化体系,在间歇式液相本体法聚丙烯生产工艺中,通过控制每釜氢气加入量为氢气钢瓶压降23~25 MPa,单釜主催化剂加入量65 g,生产熔融指数在30~35 g/10 min之间的高熔指聚丙烯,产品等规度97.0%,灰分1.3×10-4。实验证明,异丁基三乙氧基硅烷作为外给电子体的N-Ⅲ催化体系反应初期活性适中,活性衰减慢,无明显放热高峰。  相似文献   

9.
从催化剂的活性、氢调敏感性和聚合物的熔融指数(MFR)、粒径分布及等规度等方面入手,比较研究了复合外给电子体A与硅烷Donor-C对丙烯均聚反应的影响。实验结果表明:两种外给电子体所制备均聚聚丙烯等规度≥98%,粒径分布主要集中在10~60目;随着氢气加入量的增加,由复合外给电子体A制备聚合物的活性相较于Donor-C降低了约20%,MFR均呈线性递增。但是,由复合外给电子体A制备的聚合物具有优异的氢调敏感性,在氢气加入量为9NL时,复合外给电子体A和硅烷Donor-C制备聚合物的MFR分别为143.6g/10min和34.5g/10min,因此,复合外给电子体A有利于生产高熔融指数均聚丙烯产品。  相似文献   

10.
以SiO_2为载体,依次加入NiCl_2或Ni(NO_3)_2、给电子体,然后负载TiCl_4,制备多相齐格勒-纳塔催化剂,以三乙基铝为助催化剂,催化乙烯均聚合及乙烯-1-己烯共聚合,均可得到宽峰分布聚乙烯(PE)。考察了NiCl_2或Ni(NO_3)_2加入量、给电子体结构与加入量、聚合温度及1-己烯加入量对催化性能的影响,并考察了催化剂的氢调敏感性。结果表明:m(NiCl_2)/m(SiO_2)为1:10,2-氯吡啶与SiO_2的摩尔比为为1:10时,80℃下陔催化剂体系可高效催化乙烯聚合,催化效率达3.5 kg/g,PE的相对分子质量分布(M_w/M_n)为15.8;在相同条件下催化乙烯-1-己烯共聚合时,1-己烯加入量为15 mL,其催化效率可达3.7 kg/g,共聚物的M_w/M_n为16.9。  相似文献   

11.
综述了烯烃聚合用Ziegler-Natta(Z-N)催化剂活性中心的影响因素以及基于活性中心浓度测定的聚合动力学研究方法。内给电子体对催化剂的载Ti量和Ti分布以及Mg Cl2载体的微晶结构和形态都有重要影响;外给电子体的毒化作用使活性中心浓度下降,但无规活性中心浓度的下降幅度更明显,因而等规活性中心比例相对升高;共聚单体的加入使催化剂颗粒破碎,从而暴露出新的活性中心,增加了活性中心的浓度;加入氢气后聚合反应速率显著提高。由于Z-N催化剂的结构和反应机理高度复杂,研究其微观机理仍面临很多瓶颈。  相似文献   

12.
以钛酸丁酯[Ti(C_4H_9O)_4] 和TiCl_4/MgCl2(简称Ti)为主催化剂、三异丁基铝(简称Al)为助催化剂催化异戊二烯 (Ip)聚合,考察了Ti(C4H9O)4和Al用量对聚合物在汽油中可溶性及单体转化率、催化效率(CE)的影响,并对聚合物进行了表征.结果表明,当Ti/Ip(摩尔比)一定时,聚合物在汽油中的溶解度随着Ti(C_4H_9O)_4/Ip(摩尔比)的增加而增大,Ti(C_4H_9O)_4/Ip为3×10~(-3)时,单体转化率达到最大值;当主催化剂配比及用量一定时,聚合物在汽油中的溶解度随着Al/Ti(C_4H_9O)_4(摩尔比)的增加先增大后减小,当 Al/Ti(C_4H_9O)_4为10~15时,单体转化率和CE存在最大值;该催化体系制得的聚异戊二烯以反式-1,4-结构为主,同时包含一定量的3,4-和1,2-结构.  相似文献   

13.
研究了以新型含镁化合物为载体的HQ型聚丙烯高效球形催化剂的液相本体聚合,考察了聚合温度,n(Al)/n(Ti),n(Si)/n(Ti),外给电子体种类,氢气用量对催化剂催化性能的影响。结果表明:该催化剂具有良好的氢调敏感性和立体定向性。最适宜的聚合条件:反应温度为70℃,n(Al)/n(Ti)为481.0,外给电子体为甲基环己基二甲氧基硅烷,n(Si)/n(Ti)为19.2。在此条件下,HQ型催化剂的活性达34.0 kg/g,聚丙烯等规指数为97.9%以上。  相似文献   

14.
以工业上现有高效齐格勒-纳塔(Z-N)聚丙烯催化剂为基础,通过优化外给电子体种类及用量,进行了丙烯/丁烯无规共聚的小试研究。研究了烷基铝和催化剂之比(Al/Ti)、给电子体和催化剂之比(Si/Ti)和共聚单体加入量等聚合条件对催化剂共聚活性、共聚产物形态和性能的影响;通过差示扫描量热仪(DSC)、红外光谱分析、X射线衍射、扫描电镜(SEM)和核磁共振波谱法等方法对共聚产物结构进行了分析表征。结果表明,选择环己基甲基二甲氧基硅烷(CHMMS)为外给电子体,控制共聚单体加入量,共聚产物中丁烯含量在0.56%~12.0%范围可控;当共聚产物中丁烯含量为3.35%时,产物的拉伸强度36.4 MPa、冲击强度11.8 kJ/m2、断裂伸长率为596%,各项性能均明显优于均聚产物。  相似文献   

15.
采用9,9-双(甲氧基甲基)芴(BMMF)作为内给电子体,制备了聚1-丁烯高效载体型Ziegler-Nana催化剂.研究了催化剂浓度、n(Al)/n(Ti)、聚合温度、外给电子体种类及用量对该催化剂催化1-丁烯聚合的影响,并将该催化剂与无内给电子体及以邻苯二甲酸酯(DNBP)为内给电子体的聚1-丁烯催化剂进行对比.结果...  相似文献   

16.
将CMMS(环己基甲基二甲氧基硅烷)和DCPMS(二环戊基二甲氧基硅烷)外给电子体分别与CS-1型和CS-2型聚丙烯主催化剂进行丙烯聚合评价,结果表明CMMS和DCPMS是高效催化剂的有效助催化剂,它们能够提高聚丙烯的真实等规度。它们提高聚丙烯真实等规度的能力为DCPMS>CMMS>DDS。  相似文献   

17.
一、前言丙烯聚合负载型高效催化剂中,七十年代广泛使用苯甲酸乙酯[1]作为提高聚合产物等规度的给电子体。八十年代已改为用邻苯二甲酸二酯[2]作给电子体。由于使用了邻苯二甲酸二酯,使得丙烯聚合催化效率、产品等规度大大提高。达到了催化效率高、等规度高两者兼得的理想状态。使用这一催化剂聚合过程动力学曲线较平稳、活性中心寿命长,共聚性能好,催化剂更具优越性能。  相似文献   

18.
采用邻苯二甲酸二异丁酯(DIBP)为内给电子体的Mg Cl2负载Ti Cl4催化剂,考察了在无外给电子体及以环己基甲基二甲氧基硅烷(简称C-donor)、二环戊基二甲氧基硅烷(简称D-donor)、苯基三乙氧基硅烷(简称PTES)为外给电子体的条件下,催化剂对乙烯/丙烯共聚合活性、单体竞聚率、共聚物序列分布和热性能的影响。结果表明,在不同外给电子体作用下,随着乙烯进料比的增加,聚合活性先增加后逐渐减小,并呈现出明显的"共单体效应";DIBP与D-donor有很好的协同效应,二者配合可提高催化剂活性,最高可达8.3 kg(以1 g Ti计);当乙烯/丙烯(摩尔比)为40%~65%时,共聚物链段中乙烯和丙烯分布更均匀,无规度更高,具有更短的平均序列长度;当乙烯/丙烯为50%时,所得共聚物的熔融温度最低,可达108℃,玻璃化转变温度为-48.6℃,表明聚合物具有较好的耐低温性能。  相似文献   

19.
外给电子体CMMS、DCPMS制备高结晶度聚丙烯的研究   总被引:13,自引:0,他引:13  
CMMS、DCPMS外给电子体分别与CS 1型、CS 2型聚丙烯主催化剂进行丙烯聚合评价,结果表明DCPMS是高效催化剂的有效助催化剂,能够有效提高聚丙烯的真实等规度、结晶度,DCPMS更适宜制备相对高结晶性聚丙烯。  相似文献   

20.
研究了丙烯淤浆预聚合对聚丙烯(PP)性能的影响,试验过程中采用Ziegler-Natta催化剂,并使用三乙基铝作为助催化剂。结果表明,与不预聚相比,经过预聚PP的等规度、结晶度、熔点、结晶温度都有所提高,但熔体流动速率下降。预聚时加入外给电子体。可以提高PP的熔点和结晶度。在铝钛物质的量比为3/1~10/1范围内增加预聚合过程中的烷基铝用量。也可以提高PP的熔点和结晶度。提高预聚合温度。PP的结晶温度不下降。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号