首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 46 毫秒
1.
耐候钢及其腐蚀产物的研究概况   总被引:7,自引:0,他引:7  
介绍了耐候钢的发展、国内外使用及研究状况,概述了合金元素对耐候钢耐大气腐蚀性能的影响及其作用机制的研究进展,并对腐蚀产物的组成、锈层形成及其演变的电化学过程方面的研究进行了介绍,对今后耐候钢的研究与发展前景提出了展望。  相似文献   

2.
同时采用循环加载及模拟加速腐蚀的方法,研究循环载荷对耐候钢在含氯离子气氛中腐蚀行为的影响。锈层截面形貌以及带锈电极的电化学极化行为和阻抗谱表明,在相同的拉伸时间内,腐蚀周次较低时,耐候钢能较快获得稳定的锈层;腐蚀周次较高时,在长时间的循环载荷影响下,MnCu耐候钢的外锈层会更易产生裂纹甚至脱落,但内锈层结构相对稳定而基本不受一般载荷的影响,因此MnCu耐候钢依然具有良好的耐候性。  相似文献   

3.
对09CuPCrNi耐候钢干湿交替加速腐蚀后的锈层进行观察与分析,探讨了锈层的形成机理。结果表明,09CuPCrNi钢干湿交替加速腐蚀的锈层包括紧贴基体的致密内锈层和疏松的外锈层两部分。随着腐蚀周期的增加,内锈层增厚,而且更为致密。通过对比锈层中各物相的含量分析,发现γ-Fe2O3在内锈层中的含量高于外锈层,这是内锈层比外锈层更加致密的原因。同时,内锈层中Cu、P、Cr等元素明显富集,可使其更容易形成相对稳定的γ-Fe2O3相。  相似文献   

4.
对Q450耐候钢在不同浓度NaCl溶液中模拟海洋大气环境进行了周期浸润试验.采用光学显微镜、扫描哇镜和X射线衍射仪对钢的腐蚀形貌、锈层截面和腐蚀产物进行了观察和分析.结果表明:随着NaCl浓度的提高,锈层变得疏松多孔;不同浓度NaCl溶液中主要腐蚀产物相同,均为γ-FeOOH及少量Fe3O4.  相似文献   

5.
通过大气暴露腐蚀试验对比分析了碳钢和耐候钢的腐蚀情况 ,并对试片表面腐蚀产物进行了XRD和EPMA分析 ,研究了耐候钢表面锈层的稳定化过程。  相似文献   

6.
郭智辉 《铸造技术》2014,(7):1408-1410
在Q235钢中添加不同含量的合金元素Cu和Cr,研究该钢在模拟大气环境下的初期腐蚀行为。结果表明,该钢在大气腐蚀初期的腐蚀产物形态为団状和链条状,主要腐蚀产物为γ-FeOOH、α-FeOOH和γ-Fe2O3。当α-FeOOH含量较高时可以有效减慢大气腐蚀的发展趋势  相似文献   

7.
应用电化学阻抗谱研究了在模拟工业大气的腐蚀溶液中Mn对耐候钢耐腐蚀性能的影响,并通过锈层电子探针面扫描验证了实验结果。电化学阻抗谱结果显示,在腐蚀初期高锰耐候钢表现出较强的点蚀反应特征,腐蚀后期则显示和比对钢相同的耐腐蚀能力。在模拟工业大气腐蚀条件下,Mn在耐候钢的内锈层中没有产生富集,Cr 和Cu在内锈层和钢基体界面中形成了富集带,这是保护性锈层生成的主要原因。  相似文献   

8.
耐候钢的腐蚀及表面稳定化处理技术   总被引:7,自引:1,他引:7  
介绍了耐大气腐蚀用钢(耐候钢)表面稳定化锈层的结构、组成和形成机理,耐候钢的使用方式及存在的问题,较全面地阐述了国内外有关加速耐候钢稳定化锈层形成过程的表面处理技术及原理。  相似文献   

9.
通过向带锈耐候钢表面喷淋锈层稳定化剂进行预处理,使锈层表面形成了一层化学转化层,并进而研究了其对耐候钢继续腐蚀行为的影响。利用干湿循环交替腐蚀(CCT)、增重实验、场发射扫描电镜(SEM)及能谱仪(EDS)、X射线衍射分析仪(XRD)和电化学工作站等实验手段对经过预处理及未处理样品进行对比测试。结果表明:该转化层对腐蚀性离子Cl-有显著的拦截效应,并导致样品在腐蚀过程中增重减缓;预处理不改变腐蚀产物的类型,但会造成锈层内非晶相比例上升并使锈层颗粒更加细小;转化层的短期效应与长期影响不同,转化层的存在总体上有利于加速锈层稳定化。  相似文献   

10.
研究了桥梁建筑用耐候钢在含Cl-环境下表面锈层的腐蚀行为。结果表明,耐候钢组织由粒状贝氏体、针状铁素体以及准多边形铁素体组成。材料中的微量合金元素Mn可以降低腐蚀后期晶粒尺寸,促进α-FeOOH和γ-FeOOH相形成,提高材料表面锈层致密度。而Cu主要富集在锈层孔洞和缝隙处,能够改善表面锈层质量,提高耐候钢的抗腐蚀性。  相似文献   

11.
在3.5%NaCl中性干湿交替环境中,对高性能桥梁用耐候试验钢和其对比材料09CuPCrNi-A钢开展腐蚀试验,探讨其在模拟海洋大气环境下的初期腐蚀动力学曲线趋势及其腐蚀规律;利用扫描电子显微镜和能谱仪分析在腐蚀试验初期的不同阶段,高性能桥梁用耐候试验钢和其对比材料试样的表面形貌及微区成分,从而探讨它们在此种环境下的腐蚀反应历程。  相似文献   

12.
采用失重分析、电子探针分析、X射线衍射分析及电化学测试等对含Nb耐候桥梁钢在模拟工业大气环境中的腐蚀行为进行了研究,并着重研究了Nb对耐候桥梁钢腐蚀机制的影响.结果显示:含Nb耐候桥梁钢的腐蚀动力学曲线符合幂函数规律,这表明增加Nb含量可以提高腐蚀初期桥梁钢的耐蚀性,腐蚀后期,增加Nb含量对锈层保护性的影响则减弱,从减...  相似文献   

13.
目的 通过模拟西北大气环境对桥梁耐候钢腐蚀行为的影响,为西北地区桥梁钢耐蚀性能的研究提供理论依据。方法 选取除冰盐介质、NaHSO3介质、混合介质三种腐蚀介质进行干湿交替加速腐蚀实验,并采用扫描电镜+能谱、X射线衍射、电化学测试等方法,分析了Q345qNH钢在三种模拟大气环境中的腐蚀形貌、锈层特征及结构、腐蚀产物及锈层的电化学保护性。结果 Q345qNH钢在三种介质中腐蚀144 h后,腐蚀速率均明显下降,在288~480 h间,NaHSO3介质中的腐蚀速率下降趋势约是混合介质中的1.5倍、除冰盐介质中的3.8倍。三种腐蚀介质中,锈层成分均含有α-FeOOH、γ-FeOOH、Fe3O4,在除冰盐介质和混合介质中还会生成大量的不稳定β-FeOOH和可溶性FeOCl腐蚀产物,锈层疏松不稳定。此外,在NaHSO3介质中,自腐蚀电位Ecorr最高,自腐蚀电流密度Jcorr最低;除冰盐介质和混合介质中,Ecorr差别不大,但混合介质Jcorr<除冰盐介质Jcorr。对比腐蚀480 h的带锈样,稳态腐蚀区的阳极溶解电流密度有:除冰盐介质≈混合介质>NaHSO3介质。结论 Q345qNH钢在除冰盐介质中,各离子之间相互耦合,难以形成致密的保护性锈层,经过长时间的腐蚀过程,危害性最大;在NaHSO3介质中,外锈层元素富集,形成致密、稳定的保护性锈层;在除冰盐+NaHSO3混合介质中生成的锈层,其稳定性、致密性介于前两种介质中的锈层之间。  相似文献   

14.
通过周期浸润腐蚀试验对比研究了鞍钢生产的耐候桥梁钢Q500qENH和传统耐候钢09CuPCrNi在模拟工业大气环境中的腐蚀行为,并采用腐蚀形貌观察和电化学测试等手段对其腐蚀行为进行了分析。结果表明:显微组织和化学成分对钢基体的耐蚀性均具有一定影响,当保护性锈层形成后,耐蚀性主要取决于锈层的保护作用;周期浸润腐蚀试验结果和带锈试样的电化学阻抗谱、线性极化曲线分析表明Q500qENH钢耐工业大气腐蚀的能力优于09CuPCrNi钢的。  相似文献   

15.
陈超 《铸造技术》2014,(7):1394-1395
研究了汽车耐候钢09CuPCrNiA在CO2大气环境中的腐蚀行为。结果表明,耐候钢在腐蚀初期的质量增加较快,但在腐蚀约240 h后的质量增加明显减慢。腐蚀240 h和720 h后的腐蚀产物相同,均由α-Fe、Fe(OH)2、α-FeOOH和γ-FeOOH组成。  相似文献   

16.
张若美 《铸造技术》2014,(2):253-255
研究了桥梁建筑用耐候钢在含Cl-环境下表面锈层的腐蚀行为。结果表明,耐候钢组织由粒状贝氏体、针状铁素体以及准多边形铁素体组成。材料中的微量合金元素Mn可以降低腐蚀后期晶粒尺寸,促进α-FeOOH和γ-FeOOH相形成,提高材料表面锈层致密度。而Cu主要富集在锈层孔洞和缝隙处,能够改善表面锈层质量,提高耐候钢的抗腐蚀性。  相似文献   

17.
通过现场实验(1,2和2.5 a)和电化学阻抗谱(EIS)的测试,并结合腐蚀形貌宏观观察,SEM,XRD及失重法对Q235钢在北京土壤环境中的腐蚀行为及机理进行了研究。结果表明:现场埋样1,2和2.5 a的Q235钢的腐蚀特征均表现为全面腐蚀,且局部点蚀程度严重。随埋样时间的延长,Q235钢的腐蚀速率先增加后略有减小, 其平均点蚀深度和最大点蚀深度均增加。腐蚀产物均主要由α-FeOOH,β-FeOOH,γ-FeOOH及γ-Fe2O3组成。随埋样时间的延长,α-FeOOH相对含量有所增加,腐蚀产物层的致密性及连续性有所改善,但腐蚀产物层不具有良好的保护性。  相似文献   

18.
郭玉珍 《铸造技术》2014,(10):2181-2183
研究了低碳钢在模拟酸雨环境下的腐蚀行为。结果表明,模拟酸雨环境中,低碳钢表面存在棉絮状和针状两种微观形貌,腐蚀产物主要有γ-FeOOH、α-FeOOH和Fe3O4。低碳钢腐蚀速度先快后慢,并出现两种腐蚀坑。一种为蝶形腐蚀坑,另一种为向基体延伸的深而窄的腐蚀坑。  相似文献   

19.
付小凤 《铸造技术》2014,(8):1647-1649
通过模拟碱性硫化物土壤环境,研究了X70钢的应力腐蚀行为。结果表明,高应变速率下,剪切断裂组织的SCC敏感性较高,微观组织未出现二次裂纹,断裂机理以氢脆断裂为主;应变速率较低时,X70钢的断口出现以脆性解理为主的大腐蚀坑,断裂机理以阳极溶解断裂为主。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号