首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An adaptive equalization and interference cancellation method is proposed. The proposed scheme can cancel both intersymbol interference and cochannel interference, and is blind in the sense that no knowledge of the training sequences of the interfering users is required. In particular, it is a maximum likelihood sequence estimation (MLSE) equalizer that is implemented by the generalized Viterbi algorithm (GVA) with an RLS-based channel estimator. To demonstrate the potential of the proposed method, various simulation results over a frequency selective Rayleigh fading environment in the presence of cochannel interference are presented. In addition, a sequential algorithm is introduced to reduce the computational complexity of GVA  相似文献   

2.
A cluster-based maximum-likelihood sequence estimator (MLSE) for nonlinear channels was described, which consists of a clustering network and an MLSE implemented by the Viterbi algorithm. The cluster-based MLSE can be used for digital communication through nonlinear finite-length channels because channel mapping estimation is used instead of channel estimation in the conventional MLSE. The clustering network of the cluster-based MLSE, which estimates the channel mapping between the signal input vectors and the noiseless channel outputs, is a supervised network and requires a training sequence. We propose a blind channel mapping estimator to estimate the channel mapping without using the training sequence. The blind channel mapping estimator has a clustering block and a mapping block. The clustering block estimates the channel outputs, which represent the channel mapping, subject to an unknown permutation operation because no training sequence is utilized. That permutation operation is resolved by the mapping block, and therefore, the channel mapping is obtained. Introducing the blind channel mapping estimator into the cluster-based MLSE, a blind cluster-based MLSE for nonlinear channels can be done. Computer simulations of the blind channel mapping estimator and the blind MLSE for nonlinear channels are presented  相似文献   

3.
王寅 《电子科技》2011,24(3):91-93
由于在数字移动通信中要考虑多径和多普勒频移的影响,建立了瑞利时变衰落信道模型,并使用最大似然序列检测算法实现均衡.它的基本思想是在MLSE算法中插入信道估计算法,不断跟踪实时信道变化并及时更新.为降低复杂度,研究了传统的自适应MLSE算法和运幸存MLSE两种经典算法,仿真表明,当多普勒频移较小时,两种算法有相近的性能,...  相似文献   

4.
A new approach to the problem of data detection for communications over band-limited channels with unknown parameters is introduced. We propose a new way to implement the Viterbi algorithm (VA) for maximum-likelihood data sequence estimation (MLSE) in a known channel environment and utilize it to derive block adaptive techniques for joint channel and data estimation, when the channel-impulse response (CIR) is unknown. We show, via simulations, that we can achieve a probability of error very close to that of the known channel environment and nearly reach a mean-square error in the channel estimate as predicted by analytical bounds, operating on static channels, which exhibit deep nulls in their magnitude response and nonlinear phase. The proposed schemes accomplish channel acquisition after processing a few hundred symbols while operating without a training sequence, whereas linear blind equalizers, such as Sato's (1975) algorithm, fail to converge at all. The application of block processing to adaptive MLSE is also investigated for time-varying frequency-selective Rayleigh-fading channels, which are used for modeling mobile communication systems. In such environments it is shown that the proposed scheme exhibits improved performance compared to the conventional adaptive MLSE receiver using tentative delayed decisions  相似文献   

5.
A new blind channel identification and equalization method is proposed that exploits the cyclostationarity of oversampled communication signals to achieve identification and equalization of possibly nonminimum phase (multipath) channels without using training signals. Unlike most adaptive blind equalization methods for which the convergence properties are often problematic, the channel estimation algorithm proposed here is asymptotically ex-set. Moreover, since it is based on second-order statistics, the new approach may achieve equalization with fewer symbols than most techniques based only on higher-order statistics. Simulations have demonstrated promising performance of the proposed algorithm for the blind equalization of a three-ray multipath channel  相似文献   

6.
钟凯  彭华  葛临东 《电子与信息学报》2015,37(11):2672-2677
该文针对时变频率选择性衰落信道下高阶连续相位调制(CPM)信号盲均衡中存在的均衡性能较差、复杂度较高以及收敛速度慢等问题,从双向自适应信道均衡的角度出发,将线性调制信号均衡中使用的前后向自适应软输入软输出(FABA-SISO)算法推广,建立一种新的基于FABA-SISO的信道盲均衡方法,并结合逐幸存处理(PSP)思想和Kalman滤波,提出一种适用于高阶CPM信号的自适应盲均衡算法。该算法通过使用FABA-SISO算法,同时利用过去、现在和将来的观察数据进行Kalman滤波信道估计,有效改善了信道估计的精度,同时使用PSP算法来降低系统的复杂度,使得算法具有较好的工程应用性。仿真结果表明所提算法具有良好的盲均衡性能以及收敛性。  相似文献   

7.
MLSE and MAP Equalization for Transmission Over Doubly Selective Channels   总被引:1,自引:0,他引:1  
In this paper, equalization for transmission over doubly selective channels is discussed. The symbol-by-symbol maximum a posteriori probability (MAP) equalizer and the maximum-likelihood sequence estimation (MLSE) are discussed. The doubly selective channel is modeled using the basis expansion model (BEM). Using the BEM allows for an easy and low-complexity mechanism for constructing the channel trellis to implement the MLSE and the MAP equalizer. The MLSE and the MAP equalizer are implemented for single-carrier transmission and for multicarrier transmission implemented using orthogonal frequency-division multiplexing (OFDM). In this scenario, a complexity-diversity tradeoff can be observed. In addition, we propose a joint estimation and equalization technique for doubly selective channels. In this joint estimation and equalization technique, the channel state information (CSI) is obtained in an iterative manner. Simulation results show that the performance of the joint channel estimation and equalization approaches the performance when perfect CSI is available at the receiver.  相似文献   

8.
自适应减少复杂度的盲最大似然序列估计   总被引:1,自引:0,他引:1       下载免费PDF全文
许小东  路友荣  戴旭初  徐佩霞 《电子学报》2008,36(10):2044-2048
 基于逐幸存路径处理原理和自适应选择幸存路径的思想,本文提出了一种自适应减少计算复杂度的盲最大似然序列估计新算法.通过分析和推导,给出了一种近似估计网格图最小欧式距离的方法,并利用该估计值对幸存路径进行取舍,在网格搜索中仅保留少数幸存路径来进行信道参数和发送符号序列的联合盲估计.理论分析和计算机仿真结果表明,对严重符号干扰信道,在较高信噪比条件下,本文提出的新算法具有较理想的误符号率性能和较低的计算复杂度.  相似文献   

9.
In this paper, two popular adaptive equalization methods, fractionally spaced decision feedback equalization (FSDFE) and maximum-likelihood sequence estimation (MLSE), are investigated for the design of digital mobile receivers for the IS-54 specifications of the NADC* system. A bi-directional equalization technique is incorporated and a multiple training LMS (MT-LMS) algorithm is used as the adaptive algorithm for both equalization methods. The results show that both MT-MLS and bi-directional techniques are effective in improving the receiver performance. However, the MT-LMS algorithm is more useful for MLSE than FSDFE whereas the bi-directional equalization technique improves FSDFE much more than MLSE.  相似文献   

10.
薛江  彭华  马金全 《信号处理》2012,28(4):519-525
针对单输入多输出(Single-Input-Multiple-Output, SIMO)模型提出一种完全不需要信道阶数估计的直接盲均衡算法。文章利用接收数据的截短协方差矩阵和信号子空间的关系设计一种零延迟均衡器,并通过信道矩阵和均衡器系数的合响应特性克服了算法相位偏转的问题,最后得到一种对信道阶数估计鲁棒并且没有相位偏转的盲均衡算法。该算法不同于一般子空间类算法,不需要直接对接收信号的协方差矩阵进行信号子空间和噪声子空间的分解,因此对信道阶数估计具有很强的鲁棒性。文章给出了算法的Batch实现过程,同时为更好适应一般时变信道环境和实现实时处理的要求,通过递归迭代得到算法的自适应实现过程。仿真实验表明该算法几乎不受信道阶数过估计或欠估计的影响,同时该算法具有良好的均方误差(Mean Square Error, MSE)和误符号率SER(Symbol Error Rate, SER)性能,并且具有很快的收敛速度。   相似文献   

11.
By embedding a decision-feedback equalizer (DFE) into the structure of a maximum-likelihood sequence estimator (MLSE), an adaptive combined DFE/MLSE scheme is proposed. In this combined DFE/MLSE, the embedded DFE has three functions: (i) prefiltering the received signals and truncating the equivalent channel response into the desired one, (ii) compensating for channel distortions, and (iii) providing the MLSE detector with predicted values of input signals. Since the embedded MLSE detector operates on the predicted signals the detected symbols at the output of the DFE/MLSE do not suffer any delay and can be directly fed back into the embedded DFE so that the error propagation, which usually takes place in a conventional DFE, can be greatly reduced. Analytical and simulation results indicate that the performance is significantly improved by the DFE/MLSE compared to the conventional DFE while its computation complexity is much less than that of the conventional MLSE receiver. The combined DFE/MLSE can use different adaptive structures (block-updating, sliding window updating or symbol-by-symbol updating) to meet different performance objectives. Moreover, the proposed DFE/MLSE provides a trade-off between performance and complexity with a parameter m representing the MLSE detection depth as well as the number of predicting steps of the embedded DFE. For some particular values of m, this scheme is capable of emulating the conventional DFE, MLSE-VA, adaptive LE-MLSE equalizer, adaptive DDFSE, and adaptive BDFE without detection delay  相似文献   

12.
In this letter, a new clustering-based adaptive channel estimator is proposed for optical fiber communication systems with the maximum-likelihood sequence estimation (MLSE) receiver. The estimator is very effective in estimating the key channel parameters needed by the Viterbi processor without assuming that the channel memory length is known a priori to the receiver. Moreover, the application of the proposed channel estimator can induce a complexity-reduced MLSE receiver.  相似文献   

13.
Applications of clustering and neural network techniques to channel equalization have revealed the classification nature of this problem. This paper illustrates an implementation of a global system for mobile communications (GSM) receiver in which channel equalization and demodulation are realized by means of the nearest neighbor (NN) classifier algorithm. The most important advantage in using such techniques is the significant reduction in terms of the computational complexity compared with the maximum likelihood sequence estimation (MLSE) equalizer. The proposed approach involves symbol-by-symbol interpretation and the knowledge of the channel is embedded in the mapping process of the received symbols over the symbols of the training sequence. This means that no explicit channel estimation need be carried out, either with correlative blocks or using neural networks thus speeding up the entire process. The performance of the proposed receiver, evaluated through a channel simulator for mobile radio communications, is compared with the results obtained by means of a 16-state Viterbi algorithm and other suboptimal receivers. It is shown that the presented algorithm increases the bit error rate (BER) compared with the MLSE demodulator, but the performance degradation, despite the simplicity of the receiver, is kept within the limits imposed by the GSM specifications  相似文献   

14.
A simultaneous sliding window channel estimation and timing adjustment method is proposed for adaptive maximum-likelihood sequence equalizer (MLSE) in the global system for mobile communication (GSM) system, and also a tuning scheme based on least mean squared (LMS) algorithm is presented in order to improve the performance of equalizer. Simulation results show that the proposed channel estimation technique is effective for channel estimation of the adaptive equalizer  相似文献   

15.
One of the main problems in time-division multiple-access (TDMA) digital mobile communications is the poor performance of the receiver for fast-fading channels. We propose to use a novel joint data and channel estimation (JDCE) technique to improve performance. The basic idea of this method originates from the so-called generalized likelihood ratio (GLR) test of classical detection theory. The technique was combined with the well-known Viterbi algorithm and applied to blind equalization by Seshadri [1]. In this paper, we introduce this technique to TDMA mobile communications. We find that the problems of delayed channel updating and divergence caused by error decision feedback in conventional maximum likelihood sequence estimation with decision delay (MLSE/DD) can be completely solved. An improvement of 4.5 dB can be obtained compared with the MLSE/DD method when it is applied to the Northern American Digital Cellular (NADC) system. The specified IS-54 requirement of 19 dB signal-to-noise ratio (SNR) at a bit error rate (BER) of 3% and a vehicle speed of 100 km/h can be met with a remarkable margin of 8 dB. When the intersymbol interference (ISI) of a channel is not severe, the required computation is moderate. For example, in the NADC system, the computational burden of the JDCE method is twice that of the MLSE/DD method if the least-mean-squares (LMS) algorithm is used for channel tracking.This work was presented in part in the Third International Symposium on Personal, Indoor and Mobile Radio Communications, Boston, MA, October 1992.  相似文献   

16.
用于盲接收的turbo均衡与迭代信道估计   总被引:1,自引:0,他引:1  
Turbo均衡是一种将信道均衡和差错控制译码联合迭代处理的均衡机制,与传统的均衡器相比,能在更低的信噪比条件下克服严重信道失真导致的符号间干扰(ISI)。该文提出一种用于盲接收的turbo均衡和迭代信道估计方案,不依赖于训练序列或发送符号的先验知识,采用初始盲均衡处理来启动迭代信道估计和turbo均衡。在该方案中,初始盲均衡算法的选择是十分关键的,它需要在恶劣的信道条件为后续迭代处理的启动提供足够的先验信息。该文根据turbo均衡的特点,选择了超指数算法作为初始盲均衡。仿真结果表明,该文提出的用于盲接收的turbo均衡方案是有效的。  相似文献   

17.
Recently, a novel maximum-likelihood sequence estimation (MLSE) equalizer was reported that avoids the explicit estimation of the channel impulse response. Instead, it is based on the fact that the (noise-free) channel outputs, needed by the Viterbi algorithm, coincide with the points around which the received (noisy) samples are clustered and can thus be estimated directly with the aid of a supervised clustering method. Moreover, this is achieved in a computationally efficient manner that exploits the channel linearity and the symmetries underlying the transmitted signal constellation. The resulting computational savings over the conventional MLSE equalization scheme are significant even in the case of relatively short channels where MLSE equalization is practically applicable. It was demonstrated, via simulations, that the performance of this algorithm is close to that using a least-squares (LS) channel estimator, although its computational complexity is even lower than that of the least-mean squares (LMS)-trained MLSE equalizer. This paper investigates the relationship of the center estimation (CE) part of the proposed equalizer with the LS method. It is proved that, when using LS with the training sequence employed by CE, the two methods lead to the same solution. However, when LS is trained with random data, it outperforms CE, with the performance difference being proportional to the channel length. A modified CE method, called MCE, is thus developed, that attains the performance of LS with perfectly random data, while still being much simpler computationally than classical LS estimation. Through the results of this paper, CE is confirmed as a methodology that combines high performance, simplicity, and low computational cost, as required in a practical equalization task. An alternative, algebraic viewpoint on the CE method is also provided.  相似文献   

18.
Adaptive equalization for TDMA digital mobile radio   总被引:3,自引:0,他引:3  
Adaptive equalization for a TDMA (time-division multiple-access) digital cellular system is discussed. A survey of adaptive equalization techniques that includes their performance characteristics and limitations and their implementation complexity is presented. The design of adaptive equalization algorithms for a narrowband TDMA system is considered. It is concluded that, on the basis of implementation complexity and performance in the presence of multipath distortion and signal fading, MLSE (maximum-likelihood sequence estimation) and DFE (decision feedback equalization) are viable equalization methods for mobile radio  相似文献   

19.
1 IntroductionChannel estimation without the benefit of a prior known training sequence has attracted increasing attention in recent years. In this paper, a novel discrete-time digital inter-symbol interference (ISI) channel blind estimation sub-optimal a…  相似文献   

20.
A novel discrete-time digital inter-symbol interference (ISI) channel blind estimation sub-optimal algorithm is proposed. This algorithm reduces the complexity of the optimal maximum likelihood sequence estimation(MLSE) considerably based on the one-step branch transition rules in trellises, and is suitable for the estimation of the channels with small lengths of ISI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号