共查询到18条相似文献,搜索用时 62 毫秒
1.
协同过滤是迄今为止个性化推荐系统中采用最广泛最成功的推荐技术,但现有方法是将用户不同时间的兴趣等同考虑,时效性不足,而且推荐精度也有待进一步提高。鉴于此提出一种改进的协同过滤算法,针对用户近邻计算和项目评分的预测两个关键步骤,提出基于项目相关性的用户相似性计算方法,以便邻居用户更准确,同时在预测评分的过程中增加时间权限,使得接近采集时间的点击兴趣在推荐过程中具有更大权值。实验结果表明,该算法在提高了推荐精度的同时实现了实时推荐。 相似文献
2.
基于时间加权的协同过滤算法研究 总被引:2,自引:0,他引:2
协同过滤算法是目前个性化推荐系统中应用最成功的推荐算法之一,但传统的算法没有考虑用户兴趣漂移的问题,导致推荐系统的推荐质量下降.针对这个问题,提出了基于时间加权的协同过滤算法.实验表明,改进的算法提高了推荐系统的推荐质量. 相似文献
3.
4.
基于时间加权的个性化推荐算法研究 总被引:2,自引:0,他引:2
协同过滤算法是个性化推荐系统中应用最成功的推荐算法之一,但传统的算法没有考虑在不同时间段内寻找最近邻居问题,导致寻找的邻居集合可能不是最近邻居集合。针对这个问题,本文提出了基于时间加权的协同过滤算法。该算法赋予每项评分一个按时间逐步递减的权重,利用加权后的评分寻找目标用户的最近邻居。实验表明,改进的算法提高了协同过滤推荐系统的推荐质量。 相似文献
5.
协同过滤是个性化推荐系统中应用最广泛的推荐技术,现有的协同过滤算法不能反映出每年特定的事件与用户购买行为的关联性。针对这个问题,提出了一种考虑年度日程表事件的协同过滤算法,引入了时间权值函数,使得同一时期的越接近当前用户访问时间的近邻用户购买商品的推荐度越高,提高了协同过滤算法的推荐精度。 相似文献
6.
当前eLearning作为一种重要的教学方式,对其个性化的要求正在日益提高。针对协作过滤推荐是当今应用最为普遍的个性化推荐算法,而数据的稀疏性和算法的可扩展性一直是协作过滤算法所面临的两大问题,提出基于资源类的时间加权协作过滤算法。该算法不仅降低了数据的稀疏性和维度,缩小了目标用户最近邻的查找范围;而且避免了传统推荐算法中推荐值与用户相似度不密切相关的弊端,提高了最近邻的准确度,推荐精度较以往传统算法有明显提高。 相似文献
7.
时间加权不确定近邻协同过滤算法 总被引:1,自引:2,他引:1
围绕传统的协同过滤推荐算法存在的局限性展开研究,提出一种时间加权不确定近邻协同过滤推荐算法TWUNCF。根据推荐系统应用的实际情况,首先对用户和产品相似度进行时间加权以保证数据有效性,在此基础上改进相似度的计算方法。同时引入近邻因子在产品群和用户群中自适应地选择预测目标的近邻对象作为推荐群,计算推荐群中推荐概率较高的信任子群,最后通过不确定近邻的动态度量方法来对预测结果进行平衡的推荐。实验结果表明,该算法考虑了数据的时间有效性,同时平衡不同群体对推荐结果的影响,避免由于数据稀疏带来的推荐结果不准确和计算难度大的问题。理论分析和模拟实验证明,该算法在一定程度上提高了系统的准确性和推荐效率。 相似文献
8.
针对传统协同过滤算法中面临稀疏项目评分矩阵计算耗时不准确、同等对待不同时间段用户的项目评分这些影响推荐精度的问题,提出了基于项目聚类和评分的时间加权协同过滤推荐算法(TCF).该算法将项目评分与项目属性特征综合相似度高的聚到一个类别里,能有效解决数据稀疏性问题,降低生成最近邻居集合时间.引入时间加权函数赋予项目评分按时间递减的权重,根据加权后的评分寻找目标用户的最近邻居集合.实验从平均绝对误差、平均排序分和命中率三个指标来表明改进算法能有效提高推荐的准确性. 相似文献
9.
协同过滤是目前最流行的个性化推荐技术,但现有算法局限于用户项目评分矩阵,存在稀疏性、冷开始问题,邻居相似性只考虑用户共同评分项目,忽略项目属性、用户特征相关性;同等对待用户不同时间的兴趣偏好,缺乏实时性。针对这些问题,提出一种非线性组合的协同过滤算法,改进基于项目属性、用户特征的邻居相似性计算方法,获得更加准确的最近邻居集;初始预测评分填充矩阵,以增强其稠密性;最终预测评分增加时间权限,使用户最新兴趣权重最大。实验表明,该算法通过有效降低稀疏性、冷开始和实现实时推荐,提高了预测精度。 相似文献
10.
11.
针对传统协同过滤推荐算法中由于相似度计算导致推荐精度不足的问题,提出一种基于标签权重相似度量方法的协同过滤推荐算法。首先,通过改进当前算法中标签权重的计算,并构成用户-标签权重矩阵和物品-标签权重矩阵;其次,考虑到推荐系统是以用户为中心进行推荐,继而通过构建用户-物品关联矩阵来获取用户对物品最准确的评价和需求;最后,根据用户-物品的二部图,利用物质扩散算法计算基于标签权重的用户间相似度,并为目标用户生成推荐列表。实验结果表明,与一种基于"用户-项目-用户兴趣标签图"的协同好友推荐算法(UITGCF)相比,在稀疏度环境为0.1时该算法的召回率、准确率和F1值分别提高了14.69%、9.44%、17.23%。当推荐项目数量为10时,三个指标分别提高了17.99%、8.98%、16.27%。结果表明基于标签权重的协同过滤推荐算法可有效提高推荐结果。 相似文献
12.
13.
14.
针对个性化推荐系统中协同过滤算法面对的数据稀疏问题,提出了一种结合用户背景信息的推荐算法。该算法充分利用已有的用户数据和领域知识,对用户背景信息的相似度建模,在进行协同过滤前预先填充用户-项评分矩阵。实验表明该方法能够有效地提高推荐精度,并且不会带来性能上的瓶颈。 相似文献
15.
基于项目属性的用户聚类协同过滤推荐算法 总被引:1,自引:0,他引:1
协同过滤推荐算法是个性化推荐服务系统的关键技术,由于项目空间上用户评分数据的极端稀疏性,传统推荐系统中的用户相似度量算法开销较大并且无法保证项目推荐精度.通过对共同感兴趣的项目属性的相似用户进行聚类,构建了不同项目评价的用户相似性,设计了一种优化的协同过滤推荐算法.实验结果表明,该算法能够有效避免由于数据稀疏性带来的弊端,提高了系统的推荐质量. 相似文献
16.
为了缓解用户项目评分矩阵数据的稀疏性,在传统的协同过滤项目评分矩阵的基础上,对项目的特征进行分析,引入项目特征矩阵,然后结合余弦相似性和基于用户对项目属性偏好相似性综合计算用户的相似性,并通过一个权值来控制两者的重要程度,提出了一种基于用户对项目属性偏好的协同过滤算法。研究结果表明余弦相似性和用户对项目属性偏好的用户相似性比重相等时,推荐系统的推荐质量最好;而且当评分矩阵越稀疏的时候,用户对项目属性偏好的用户相似性的比重越大越可以提高推荐质量;同时提出的基于用户对项目属性偏好的协同过滤算法在[MAE]值都要小于两种传统的协同过滤算法。 相似文献
17.
协同过滤推荐系统的近邻选择环节中不仅没有考虑目标项目对用户间相似性计算的影响,而且也未考虑邻居用户对目标用户的推荐贡献能力,导致既降低了相似性计算的准确性,也提高了近邻集合中伪近邻的比例。针对这些问题,提出了一种基于熵优化近邻选择的协同过滤推荐算法。算法首先使用巴氏系数计算项目间相似性,并以此为权重加权计算用户间相似性。其次引入熵描述用户评分分布特性,根据评分分布差异性衡量邻居用户的推荐贡献能力。最后,利用双重准则共同计算推荐权重,并构建近邻集合。实验结果表明该算法能够在不牺牲时间复杂度的条件下准确地选取近邻集合,提升推荐准确度。 相似文献
18.
根据长尾理论,被反馈次数少的项目所包含的反馈信息并不少于被反馈次数较高的,传统的协同过滤算法中缺乏考虑冷门项目在最终的项目推荐过程中的影响力,对此,提出了一种改进的协同过滤推荐模型。通过对冷门项目的分析筛选,在用户相似性计算时提高冷门项目所占的比重,以体现用户的个性和兴趣。此外,考虑到时间效应的影响,在兴趣预测过程中引入时间因子。实验结果表明,提出的算法能提高寻找最近邻居的准确性,从而改善协同过滤的推荐质量。 相似文献