首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
A circuit technique is proposed in this paper for simultaneously reducing the subthreshold and gate oxide leakage power consumption in domino logic circuits. PMOS-only sleep transistors and a dual threshold voltage CMOS technology are utilized to place an idle domino logic circuit into a low leakage state. Sleep transistors are added to the dynamic nodes in order to reduce the subthreshold leakage current by strongly turning off all of the high threshold voltage transistors. Similarly, the sleep switches added to the output nodes suppress the voltages across the gate insulating layers of the transistors in the fan-out gates, thereby minimizing the gate tunneling current. The proposed circuit technique lowers the total leakage power by 88 to 97% as compared to the standard dual threshold voltage domino logic circuits. Similarly, a 22 to 44% reduction in the total leakage power is observed as compared to a previously published sleep switch scheme in a 45 nm CMOS technology.  相似文献   

2.
A circuit technique is proposed in this paper for simultaneously reducing the subthreshold and gate oxide leakage power consumption in domino logic circuits. Only p-channel sleep transistors and a dual-threshold voltage CMOS technology are utilized to place an idle domino logic circuit into a low leakage state. Sleep transistors are added to the dynamic nodes in order to reduce the subthreshold leakage current by strongly turning off all of the high-threshold voltage transistors. Similarly, the sleep switches added to the output nodes suppress the voltages across the gate insulating layers of the transistors in the fan-out gates, thereby minimizing the gate tunneling current. The proposed circuit technique lowers the total leakage power by up to 77% and 97% as compared to the standard dual-threshold voltage domino logic circuits at the high and low die temperatures, respectively. Similarly, a 22% to 44% reduction in the total leakage power is observed as compared to a previously published sleep switch scheme in a 45-nm CMOS technology. The energy overhead of the circuit technique is low, justifying the activation of the proposed sleep scheme by providing a net savings in total energy consumption during short idle periods.  相似文献   

3.
A circuit technique is presented for reducing the subthreshold leakage energy consumption of domino logic circuits. Sleep switch transistors are proposed to place an idle dual threshold voltage domino logic circuit into a low leakage state. The circuit technique enhances the effectiveness of a dual threshold voltage CMOS technology to reduce the subthreshold leakage current by strongly turning off all of the high threshold voltage transistors. The sleep switch circuit technique significantly reduces the subthreshold leakage energy as compared to both standard low-threshold voltage and dual threshold voltage domino logic circuits. A domino adder enters and leaves a low leakage sleep mode within a single clock cycle. The energy overhead of the circuit technique is low, justifying the activation of the proposed sleep scheme by providing a net savings in total power consumption during short idle periods.  相似文献   

4.
Dual threshold voltages domino design methodology utilizes low threshold voltages for all transistors that can switch during the evaluate mode and utilizes high threshold voltages for all transistors that can switch during the precharge modes. We employed standby switch can strongly turn off all of the high threshold voltage transistors which enhances the effectiveness of a dual threshold voltage CMOS technology to reduce the subthreshold leakage current. Subthreshold leakage currents are especially important in burst mode type integrated circuits where the majority of the time for system is in an idle mode. The standby switch allowed a domino system enters and leaves a low leakage standby mode within a single clock cycle. In addition, we combined domino dynamic circuits style with pass transistor XNOR and CMOS NAND gates to realize logic 1 output during its precharge phase, but not affects circuits operation in its evaluation and standby phase. The first stage NAND gates output logic 1 can guarantee the second stage computation its correct logic function when system is in a cascaded operation mode. The processing required for dual threshold voltage circuit configuration is to provide an extra threshold voltage involves only an additional implant processing step, but performs lower dynamic power consumption, lower delay and high fan-out, high switching frequencies circuits characteristics. SPICE simulation for our proposed circuits were made using a 0.18 µm CMOS process from TSMC, with 10 fF capacitive loads in all output nodes, using the parameters for typical process corner at 25 °C, the simulation results demonstrated that our designed 8-bit carry look-ahead adders reduced chip area, power consumption and propagation delay time more than 40%, 45% and around 20%, respectively. Wafer based our design were fabricated and measured, the measured data were listed and compared with simulation data and prior works. SPICE simulation also manifested lower sensitivity of our design to power supply, temperature, capacitive load and process variations than the dynamic CMOS technologies.  相似文献   

5.
Temperature-dependent subthreshold and gate-oxide leakage power characteristics of domino logic circuits under the influence of process parameter variations are evaluated in this paper. Preferred input vectors and node voltage states that minimize the total leakage power consumption are identified at the lower and upper extremes of a typical die temperature spectrum. New low-leakage circuit design guidelines are presented based on the results. Significantly increased gate dielectric tunneling current, as described in this paper, dramatically changes the leakage power characteristics of dynamic circuits in deeply scaled nanometer CMOS technologies. Contrary to the previously published techniques, a charged dynamic-node voltage state with low inputs is preferred for reducing the total leakage power consumption in the most widely used types of single- and dual-threshold voltage domino gates, particularly at low die temperatures. Furthermore, leakage power savings provided by the dual-threshold voltage domino logic circuit techniques based on input gating are all together reduced due to the significance of gate dielectric tunneling in sub-45-nm CMOS technologies.  相似文献   

6.
We propose a multiple supply voltage scaling algorithm for low power designs. The algorithm combines a greedy approach and an iterative improvement optimization approach. In phase I, it simultaneously scales down as many gates as possible to lower supply voltages. In phase II, a multiple way partitioning algorithm is applied to further refine the supply voltage assignment of gates to reduce the total power consumption. During both phases, the timing correctness of the circuit is maintained. Level converters (LCs) are adjusted correctly according to the local connectivity of the different supply voltage driven gates. Experimental results show that the proposed algorithm can effectively convert the unused slack of gates into power savings. We use two of the ISPD2001 benchmarks and all of the ISCAS89 benchmarks as test cases. The 0.13-mum CMOS TSMC library is used. On average, the proposed algorithm improves the power consumption of the original design by 42.5% with a 10.6% overhead in the number of LCs. Our study shows that the key factor in achieving power saving is including the most comfortable supply voltage in the scaling process.  相似文献   

7.
A method is proposed to compensate for local delay variations by adjusting the supply voltage of individual circuit blocks. In-situ characterization of sub-blocks allows for voltage adjustment with minimum safety margin. Different strategies and circuit techniques for in-situ delay characterization of sub-blocks are described and compared. A dual VDD/power switch scheme is proposed for discrete voltage assignment to individual sub-blocks. Experimental results are presented for a test module based on an ARM9 core, fabricated in 130-nm CMOS. Yield improvement and power reduction capabilities are demonstrated by Monte Carlo simulations. For a typical setting, a reduction of 10% in power can be achieved with the proposed dual VDD/power switch concept. Using more than two supply voltages is shown to produce only small additional power savings at the price of high area overhead. The effect of the proposed scheme increases with increasing intra-die variability, which makes it suitable especially for future technologies.  相似文献   

8.
We demonstrate a novel algorithm for assigning the threshold voltage to the gates in a digital random logic complementary metal-oxide-semiconductor (CMOS) circuit for a dual-threshold voltage process. The tradeoff between static and dynamic power consumption has been explored. When used along with device sizing and supply voltage reduction techniques for low power, the proposed algorithm can reduce the total power dissipation of a circuit by as much as 50%  相似文献   

9.
Employing multiple supply voltages (multi- VDD) is an effective technique for reducing the power consumption without sacrificing speed in an integrated circuit (IC). In order to transfer signals among the circuits operating at different voltage levels specialized voltage interface circuits are required. Two novel multi-threshold voltage (multi-Vth) level converters are proposed in this paper. The new multi-Vth level converters are compared with the previously published circuits for operation at different supply voltages. When the circuits are individually optimized for minimum power consumption, the proposed level converters offer significant power savings of up to 70% as compared to the previously published circuits. Alternatively, when the circuits are individually optimized for minimum propagation delay, the speed is enhanced by up to 78% with the proposed voltage interface circuits in a 0.18- mum TSMC CMOS technology.  相似文献   

10.
In this paper, a new charging scheme for reducing the power consumption of dynamic circuits is presented. The proposed technique is suitable for large fan-in gates where the dynamic node discharges frequently. Simulation results demonstrate that the proposed method is efficiently controlling the internal voltage swing and hence decreasing the power consumption of the wide fan-in OR gate without sacrificing other circuit parameters such as gate speed, area or noise immunity. The power-delay product of a simulated 8-input OR gate is reduced by 46%, compared to its conventional dynamic counterpart in the 90 nm CMOS technology. Another important benefit of the proposed approach is 99X reduction in power dissipation of the gate load by limiting its switching activity. Furthermore, the delay of the proposed circuit experiences only 0.94% variation over 10% fluctuation in the threshold voltages of all transistors for a 32-bit OR gate. Using the proposed technique, a 40-bit tag comparator is simulated at 1 GHz clock frequency. The power consumption of the designed circuit is as low as 1.987 µW/MHz, while the delay and unity noise gain (UNG) of the circuit are 244 ps and 499 mV, respectively.  相似文献   

11.
Dynamic logic is susceptible to noise, especially in the ultra-deep submicrometer dual threshold voltage technology. When the dual threshold voltage is applied to the domino logic, noise immunity must be carefully considered since the significant subthreshold current of the low threshold voltage transistor makes the dynamic node much more susceptible to noise. In the first part of this paper, we introduce a new keeper transistor sizing method to determine the optimal keeper transistor size in terms of speed, power, and noise immunity. With the use of data obtained by presimulation, it is unnecessary to simulate all the design corners corresponding to the feasible NMOS evaluation transistor size ranges to find the optimal keeper transistor size. HSPICE simulation results show that the proposed keeper transistor sizing method can be broadly applied to all the domino logic gates. In the second part of this paper, we propose a new dual threshold voltage domino logic synthesis with the keeper transistor sizing to minimize the power consumption while meeting delay and noise constraints. With the optimal keeper transistor size determined by the proposed keeper transistor sizing method, the dual threshold voltage assignment to domino logic can be simplified to the discrete threshold voltage selection. Experimental results for ISCAS85 benchmark circuits show significant savings on leakage power and active power.  相似文献   

12.
FinFET domino logic with independent gate keepers   总被引:1,自引:0,他引:1  
Scaling of single-gate MOSFET faces great challenges in the nanometer regime due to the severe short-channel effects that cause an exponential increase in the sub-threshold and gate-oxide leakage currents. Double-gate FinFET technology mitigates these limitations by the excellent control over a thin silicon body by two electrically coupled gates. In this paper a variable threshold voltage keeper circuit technique using independent-gate FinFET technology is proposed for simultaneous power reduction and speed enhancement in domino logic circuits. The threshold voltage of a keeper transistor is dynamically modified during circuit operation to reduce contention current without sacrificing noise immunity. The optimum independent-gate keeper gate bias conditions are identified for achieving maximum savings in delay and power while maintaining identical noise immunity as compared to the standard tied-gate FinFET domino circuits. With the variable threshold voltage double-gate keeper circuit technique the evaluation speed is enhanced by up to 49% and the power consumption is reduced by up to 46% as compared to the standard domino logic circuits designed for similar noise margin in a 32 nm FinFET technology.  相似文献   

13.
Gate-level voltage scaling is an approach that allows different supply voltages for different gates in order to achieve power reduction. Previous research focused on determining the voltage level for each gate and ascertaining the power saving capability of the approach via logic-level power estimation. In this correspondence, we present cell-based layout techniques that make the approach feasible. We first propose a new block layout style and a placement strategy to support the voltage scaling with conventional standard cell libraries. Then, we propose a new cell layout style with built-in multiple supply rails so that gate-level voltage scaling can be immediately embedded in a typical cell-based design flow. Experimental results show that proposed techniques maintain good power benefit while introducing moderate layout overhead  相似文献   

14.
A voltage scaling technique for energy-efficient operation requires an adaptive power-supply regulator to significantly reduce dynamic power consumption in synchronous digital circuits. A digitally controlled power converter that dynamically tracks circuit performance with a ring oscillator and regulates the supply voltage to the minimum required to operate at a desired frequency is presented. This paper investigates the issues involved in designing a fully digital power converter and describes a design fabricated in a MOSIS 0.8-μm process. A variable-frequency digital controller design takes advantage of the power savings available through adaptive supply-voltage scaling and demonstrates converter efficiency greater than 90% over a dynamic range of regulated voltage levels  相似文献   

15.
Circuit-Level Design Approaches for Radiation-Hard Digital Electronics   总被引:1,自引:0,他引:1  
In this paper, we present a novel circuit design approach for radiation hardened digital electronics. Our approach is based on the use of shadow gates, whose task it is to protect the primary gate in case it is struck by a heavy cosmic ion. We locally duplicate the gate to be protected, and connect a pair of diode-connected transistors (or diodes) between the outputs of the original and shadow gates. These transistors turn on when the voltages of the two gates deviate during a radiation strike. Our experiments show that at the level of a single gate, our circuit structure has a delay overhead about 1.76% on average, and an area overhead of 277%. At the circuit level, however, we do not need to protect all gates. We present a methodology to selectively protect specific gates of the circuit in a manner that guarantees radiation tolerance for the entire circuit. With this methodology, we demonstrate that at the circuit level, the average delay overhead is about 3% and the average placed-and-routed area overhead is 28%, compared to an unprotected circuit (for delay mapped designs). We also propose an improved circuit protection algorithm to reduce the area overhead associated with our approach. With this approach for circuit protection, the area and delay overheads are further lowered.   相似文献   

16.
Gate-level voltage scaling is an approach that allows different supply voltages for different gates in order to achieve power reduction. Previous research focused on determining the voltage level for each gate and ascertaining the power-saving capability of the approach via logic-level power estimation. In this paper, we present cell-based layout techniques that make the approach feasible. We first propose a new block layout style and a placement strategy to support the voltage scaling with conventional standard cell libraries. Then we propose a new cell layout style with built-in multiple supply rails so that gate-level voltage scaling can be immediately embedded in a typical cell-based design flow. Experimental results show that proposed techniques maintain good power benefit while introducing moderate layout overhead  相似文献   

17.
A GaAs dynamic logic gate is proposed which uses a trickle transistor to compensate for leakage from the precharged node. This trickle transistor dynamic logic (TTDL) circuit is configured as a domino logic gate and a differential cascode voltage switch logic (CVSL) gate. Delay chains were implemented in a 1-μm GaAs enhancement/depletion (E/D) process where the depletion-mode FETs (DFETs) and the enhancement-mode FETs (EFETs) have threshold voltages of -0.6 and 0.15 V, respectively, in order to obtain an experimental characterization of these gates. In addition, the TTDL gates were used to implement a 4-b carry-lookahead adder. The adder has a critical delay of 0.8 ns and a power dissipation of 130 mW  相似文献   

18.
We present a leakage current replica (LCR) keeper for dynamic domino gates that uses an analog current mirror to replicate the leakage current of a dynamic gate pull-down stack and thus tracks process, voltage, and temperature. The proposed keeper has an overhead of one field-effect transistor per gate plus a portion of a shared current mirror. Techniques for properly sizing LCR keepers are presented. Using these sizings, LCR keepers allow design of and-or circuits with 30% more legs than conventional keepers at the same noise margin in a 90-nm, 1.2-V CMOS logic process. Furthermore, 16-24-leg dynamic AO circuits are 25%-40% faster when using the replica keeper. We demonstrated the circuit operation on a 1024 words times 72 bits, 3W/4R embedded SRAM macro using a four-stage LCR-keeper domino structure for a read-out circuit  相似文献   

19.
Multi-V/sub DD/ design is an effective way to reduce power consumption, but the need for level conversion imposes delay and energy penalties that limit the potential gains. In this paper, we describe new level converting circuits that provide 10%-61% lower energy consumption at equivalent or better speeds compared to those available in the literature. Furthermore, we make the argument that level converters should be evaluated largely by their maximum speed since slower level converters consume valuable timing slack that can be used to reduce the energy of other gates in the circuit. Based on this criterion, we find the new structures to offer up to a 25% speed improvement over conventional level converters. Using an efficient dual V/sub DD/ voltage assignment algorithm, we show that this speed improvement can yield a reduction of up to 7.3% in total circuit power in small benchmark circuits. We also propose embedding the functionality of logic gates into the level converting circuits. For typical values of the second supply voltage, this technique can reduce delay by 15% at constant energy or lower energy by up to 30% at fixed delay.  相似文献   

20.
In this paper, we present two charge pump architectures for nonvolatile memories with dynamic biasing of the gate and the body voltages. By controlling the gate and the body voltage of each pass-transistor, the voltage loss due to the device threshold is removed and the charge is pumped from one stage to the following with a negligible voltage drop and large conductivity. The charge pumps were fabricated in the ST 130-nm digital standard CMOS technology. Compared to conventional charge pumps, larger output voltage and better power efficiency are achieved still retaining a simple two-phase clocking scheme. Measurements performed on four-stage and eight-stage charge pumps are provided.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号