首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electroosmotic flow (EOF) is commonly utilized in microfluidics. Because the direction of the EOF can be determined by the substrate surface charge, control of the surface chemical state offers the potential, in addition to voltage control, to direct the flow in microfluidic devices. We report the use of polyelectrolyte multilayers (PEMs) to alter the surface charge and control the direction of flow in polystyrene and acrylic microfluidic devices. Relatively complex flow patterns with simple arrangements of applied voltages are realized by derivatization of different arms of a single device with oppositely charged polyelectrolytes. In addition, flow in opposite directions in the same channel is possible. A positively derivatized plastic substrate with a negatively charged lid was used to achieve top-bottom opposite flows. Derivatization of the two sides of a plastic microchannel with oppositely charged polyelectrolytes was used to achieve side-by-side opposite flows. The flow is characterized using fluorescence imaging and particle velocimetry.  相似文献   

2.
3.
Coating of substrates with polyelectrolyte multilayers terminated with poly(acrylic acid) (PAA) followed by activation of the free -COOH groups of PAA provides a surface that readily reacts with amine groups to allow covalent immobilization of antibodies. The use of this procedure to prepare arrays of antibodies in porous alumina supports facilitates construction of a flow-through system for analysis of fluorescently labeled antigens. Detection limits in the analysis of Cy5-labeled IgG are 0.02 ng/mL because of the high surface area of the alumina membrane, and the minimal diameter of the substrate pores results in binding limited by kinetics, not mass transport. Moreover, PAA-terminated films resist nonspecific protein adsorption, so blocking of antibody arrays with bovine serum albumin is not necessary. These microarrays are capable of effective analysis in 10% fetal bovine serum.  相似文献   

4.
The alternate deposition of exponentially and linearly growing polyelectrolyte multilayers leads to the formation of multicompartment films. In this study, a new system consisting in nanometer-sized multilayer barriers deposited on or between multilayer compartments was designed to respond to mechanical stimuli and to act as nanovalves. The diffusion of polyelectrolytes through the barrier from one compartment to another can be switched on/off by tuning the mechanical stretching and thereby opening or closing nanopores in the barrier. This work represents a first step toward the design of chemically or biologically active films responding to mechanical stresses.  相似文献   

5.
This article reviews the progress in the field of polyelectrolyte multilayer membranes with special attention to freestanding membranes. These can be prepared both in the form of hollow capsules and as flat membrane sheets. While (bio) functionality, or bioactivity as it is known, from solid supported multilayers is maintained, additional applications arise for the freestanding membranes in the fields of encapsulation, separation and micromechanics. The production processes and functionalities achieved for capsules and flat sheets. The integration of membranes into larger scale structures is essential for their use and an overview of existing strategies is given. In particular, the way in which arrays of micro-compartments can be built up is shown, and their potential for sensing and combinatorial chemistry discussed. Recent results on the applications of such systems as membrane sensors in the case of flat membrane sheets are also discussed.  相似文献   

6.
For nearly two centuries, researchers have sought novel methods to increase light transmission in optical systems, as well as to eliminate unwanted reflections and glare. Anti-reflection coatings and surfaces have enabled the increasing performance demands of optical components fabricated from glass-based optical materials. With the current trend of technology moving towards optically transparent polymeric media and coatings, the need for anti-reflection technology and environmentally benign processing methods for polymeric materials independent of shape or size has become quite apparent. We describe an economical, aqueous-based process controlled at the molecular level that simultaneously coats all surfaces of almost any material. Systematically designed nanoporous polymer films are used, which are suitable for optical applications operating at both visible and near-infrared wavelengths. These high-efficiency anti-reflection coatings are created from phase-separated polyelectrolyte multilayer films that undergo a reversible pH-induced swelling transition. Furthermore, such films, easily patterned by an inkjet printing technique, possess potential for pH-responsive biomaterial and membrane applications.  相似文献   

7.
The presence of an ultrathin film of polyelectrolyte complex, formed by the multilayering method, on an electrode was shown to enhance the intensity of electrogenerated chemiluminescence (ECL) from the tris(2,2')bipyridylruthenium(II)/tripropylamine system. Platinum electrodes coated with up to 17 layers of poly(diallyldimethylammonium chloride) or poly(vinylmethylpyridine), alternately layered with poly(styrenesulfonate), revealed significant differences in enhancement of ECL, depending on the identity of the multilayer. ECL following deposition of each layer showed an oscillating intensity of light emission, which alludes to the importance of surface and bulk charge. This effect, along with others, such as increased output with increasing tripropylamine concentration, was used to suggest a mechanism for enhanced ECL intensity at multilayer-coated electrodes.  相似文献   

8.
We present steady state and time-resolved photoluminescence (PL) characteristics of differently charged CdTe quantum dots (QDs) adsorbed onto a polyelectrolyte (PE) multilayer. The PE multilayer is built up using a layer-by-layer assembly technique. We find that the diffusion of the QDs into the PE multilayer is an important factor in the case of 3-mercapto-1, 2-propanediol stabilized QDs (neutral surface charge), resulting in a ~31-fold enhancement in PL intensity accompanied by a blue shift in the PL spectra and an increase in decay lifetime from 3.74?ns to a maximum of 11.65?ns. These modified emission properties are attributed to the enhanced surface related emission resulting from the interaction of the QD's surface with the PE. We find that diffusion does not occur for thioglycolic acid (TGA) stabilized QDs (negative surface charge) or 2-mercaptoethylamine stabilized QDs (positive surface charge), indicating localization of the QDs on top of the PE multilayer. However, the PL lifetime of the TGA stabilized QDs decreases from 9.58 to 5.78?ns with increasing PE multilayer thickness. This provides evidence for increased intrinsic exciton recombination relative to surface related emission, which results in an overall reduction in the average lifetime. Our studies indicate the importance of the QD surface charge in determining the interaction with the PE multilayers and the subsequent modification of the QD emission properties.  相似文献   

9.
Using a sol-gel method, we have fabricated poly(dimethylsiloxane) (PDMS) microchips with SiO2 particles homogeneously distributed within the PDMS polymer matrix. These particles are approximately 10 nm in diameter. To fabricate such devices, PDMS (Sylgard 184) was cast against SU-8 molds. After curing, the chips were carefully removed from the mold and sealed against flat, cured pieces of PDMS to form enclosed channel manifolds. These chips were then solvated in tetraethyl orthosilicate (TEOS), causing them to expand. Subsequently, the chips were placed in an aqueous solution containing 2.8% ethylamine and heated to form nanometer-sized SiO2 particles within the cross-linked PDMS polymer. The water contact angle for the PDMS-SiO2 chips was approximately 90.2 degrees compared to a water contact angle for Sylgard 184 of approximately 108.5 degrees . More importantly, the SiO2 modified PDMS chips showed no rhodamine B absorption after 4 h, indicating a substantially more hydrophilic and nonabsorptive surface than native PDMS. Initial electroosmotic mobilities (EOM) of (8.3+/-0.2)x10(-4) cm2/(V.s) (RSD=2.6% (RSD is relative standard deviation); n=10) were measured. This value was approximately twice that of native Sylgard 184 PDMS chips (4.21+/-0.09)x10(-4) cm2/(V.s) (RSD=2.2%; n=10) and 55% greater than glass chips (5.3+/-0.4)x10(-4) cm2/(V.s) (RSD=7.7%; n=5). After 60 days of dry storage, the EOM was (7.6+/-0.3)x10(-4) cm2/(V.s) (RSD=3.9%; n=3), a decrease of only 8% below that of the initially measured value. Separations performed on these devices generated 80,000-100,000 theoretical plates in 6-14 s for both tetramethylrhodamine succidimidyl ester and fluorescein-5-isothiocyanate derivatized amino acids. The separation distance was 3.5 cm. Plots of peak variance vs analyte migration times gave diffusion coefficients which indicate that the separation efficiencies are within 15% of the diffusion limit.  相似文献   

10.
11.
12.
13.
The layer-by-layer (LbL) deposition technique was used to coat and protect poly(methyl methacrylate) (PMMA) and poly(dimethylsiloxane) (PDMS) substrate from organic solvent. PMMA and PDMS substrates were protected by polyelectrolyte multilayers (PEM) thin films of either poly(diallydimethiyl ammonium chloride) and Poly(styrene sulfonate) PDADMAC/PSS or chitosan/alginate. The PEM depositited on the PMMA and PDMS substrates improved the organic solvent resistance with the best results obtained from the chitosan/alginate over the PDADMAC/PSS pair. The more hydrophilic character of the chitosan/alginate and the PDADMAC/PSS film caused a significant decreasing rate of organic solvent pentration into the PMMA substrate which retain transparent optical properties for up to 30 dipping in acetonitrile. A 20 layers chitosan alginate film also decreased PDMS substrate swelling when exposed to chloroform vapor. The PEMs coating could protect the PMMA and PDMS sample against organic solvent and vapor which could make them useful in microfluidic systems even in agressive environment.  相似文献   

14.
Xingjie Zan  Zhaohui Su   《Thin solid films》2009,518(1):116-119
Counterions present at the surface of polyelectrolyte multilayers were utilized for the introduction of charged species into the multilayer via ion exchange. A typical polyelectrolyte multilayer film with Na+ counterions in the outermost layer was immersed in an AgNO3 aqueous solution and the rapid ion-exchange process was complete within 1 min. The silver ions thus introduced were then reduced in situ and silver nanoparticles were produced at the surface of the multilayer assembly. This example demonstrates that the counterions naturally occurring in every polyelectrolyte multilayer film can be a convenient vehicle for the introduction of various functionalities to the film.  相似文献   

15.
Fully enclosed microfluidic paper-based analytical devices   总被引:3,自引:0,他引:3  
This article introduces fully enclosed microfluidic paper-based analytical devices (microPADs) fabricated by printing toner on the top and bottom of the devices using a laser printer. Enclosing paper-based microfluidic channels protects the channels from contamination, contains and protects reagents stored on the device, contains fluids within the channels so that microPADs can be handled and operated more easily, and reduces evaporation of solutions from the channels. These benefits extend the capabilities of microPADs for applications as low-cost point-of-care diagnostic devices.  相似文献   

16.
Micropreparative fraction collection following microchip-based electrophoretic analysis of biomolecules is of major importance for a variety of biomedical applications. In this paper, we present a microfabricated device-based fraction collection system. Various size DNA fragments were separated and collected by simply redirecting the desired portions of the detected sample zones to corresponding collection wells using appropriate voltage manipulations. The efficiency of sampling and collection of the fractions was enhanced by placing a cross channel at or downstream of the detection point. Following the detection of the band of interest, the potentials were reconfigured to sampling/collection mode, so that the selected sample zone migrated to the appropriate collection well of the microdevice. The potential distribution assured that the rest of the analyte components in the separation column was retarded, stopped, or reversed, increasing in this way the spacing between the sample zone being collected and the immediately following one. By this means, a precise collection of spatially close consecutive bands could be facilitated. Once the target sample fraction reached the corresponding collection well, the potentials were switched back to separation mode. Alternation of the separation/detection and sampling/collection cycles was repeated until all required sample zones were physically isolated. The integrated device consists of a sample introduction, separation, fraction sampling, and fraction collection compartments. The feasibility of the fraction collection technique was tested on a mixture of dsDNA fragments. The amounts of DNA collected in this way were enough for further downstream sample processing, such as conventional PCR-based analysis.  相似文献   

17.
Yoo PJ  Nam KT  Belcher AM  Hammond PT 《Nano letters》2008,8(4):1081-1089
We introduce a simple method to pattern electrostatic assemblies of viruses onto a polyelectrolyte multilayer. The increased mobility of weak polycation chains in the multilayer above a given thickness ensures the surface mobility of viruses required for spontaneous ordering of densely packed viruses atop polymeric patterns. To pattern the polyelectrolyte multilayer film, we employ a nonconventional patterning method known as solvent-assisted capillary molding for the first time on multilayer films, and demonstrate micrometer-scaled dense patterns of viruses, where the accessible feature size can be correlated by the length scale of virus and swelling property of underlying patterned polyelectrolyte multilayer. We further examine the ability to modify the top surfaces of these assemblies with biological ligands, which extends the applicability of patterned viruses to biological detection purposes. We expect that the present method described here can be generally applied to the patterning of other polyelectrolyte multilayers and combined with the ordered assembly of anisotropic nanomaterials such as polymeric nanotubes or inorganic nanowires for a broad range of applications.  相似文献   

18.
Polyelectrolyte multilayers comprised of poly(allylamine hydrochloride) and poly(acrylic acid) were assembled by layer-by-layer technique for metal nanoparticle syntheses. Using weak polyelectrolytes in LbL process, it is readily available to tune the deposited film properties by simple changing of the dipping solution pH. The PAH/PAA multilayer systems exhibit different surface morphologies and functionalities depending on the assembly conditions. We have studied two distinctive PAH/PAA multilayer films to utilize them for nanoparticle synthesis. The reactive functional groups of the polyelectrolytes within the films were remained after the film deposition or reactivated by a simple pH stimulus, and therefore they were allowed to undergo further chemical reactions to synthesize Pd and Au nanoparticles. Synthesized metal nanoparticles were easily characterized by their optical properties including surface plasmon absorption. These metal nanoparticle-embedded multilayers may have great potentials for biomolecule sensing or catalytically active coatings.  相似文献   

19.
Two types of polyelectrolyte multilayers were formed on both sides of a quartz crystal microbalance (QCM) substrate by a novel alternate drop coating process. In this study, poly(diallyldimethylammonium chloride) (PDDA) and poly(sodium 4-styrene sulfonate) (PSS) were used as strong-strong polyelectrolytes. On the other hand, PDDA and poly(acrylic acid) (PAA) were used as strong-weak polyelectrolytes. The novel alternate drop coating process can separately fabricate each polyelectrolyte multilayer on both sides of the substrate. The substrate provides dual biointerfaces, both sides of which comprise different multilayers, by employing a combination of polymers. The formation of the multilayer by alternate drop coating was evaluated in terms of changes in the frequency of the QCM and model protein adsorption for proteins such as bovine serum albumin, and their characteristics were investigated with those of the conventional alternate adsorption process by performing dip coating. There was no significant difference between the surface properties resulting from the two formation conditions. This result strongly supported the fact that the multilayers fabricated by alternate drop coating were similar in quality to those fabricated by conventional dip coating. The resulting dual biointerfaces with polyelectrolyte multilayers provide alternative biofunctions in terms of individual protein loading. In summary, the novel alternate drop coating process for substrates is a good candidate for the preparation of dual biointerfaces in the biomedical field.  相似文献   

20.
Electroosmotic manipulation of fluids was demonstrated using thin metal electrodes integrated within microfluidic channels at the substrate and cover plate interface. Devices were fabricated by photolithographically patterning electrodes on glass cover plates that were then bonded to polymeric substrates into which the channels were cast. Polymeric substrates were used to provide a permeable membrane for the transport and removal of gaseous electrolysis products generated at the electrodes. Electroosmotic flow between interdigitated electrodes was demonstrated and provided electric field-free pumping of fluids in sections of the channel outside of the electrode pairs. The resultant pumping velocities were shown to be dependent on the applied voltage, not on the applied field strength, and independent of the length of the electroosmotically pumped region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号