首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 53 毫秒
1.
The samples of SR-86 polymer were irradiated with12C5+ ions of energy 5·0 MeV/u using fluences of 1011−1014 ions/cm2 at NSC Pelletron in a high vacuum scattering chamber. The optical studies show an increase in absorption of UV or IR in the shorter wavelength region (250–500 nm). The study also reveals that the increase in radiation dose extends the optical absorption region to longer wavelengths. It is observed that the bulk etch rate of this polymer is enhanced after heavy ion irradiation.  相似文献   

2.
Polyethersulfone (PES) films were irradiated with 3 MeV proton beams in the fluence range 1013–1015 ions/cm2. The radiation induced changes in microhardness was investigated by a Vickers’ microhardness tester in the load range 100–1000 mN and electrical properties in the frequency range 100 Hz-1 MHz by an LCR meter. It is observed that microhardness of the film increases significantly as fluence increases up to 1014 ions/cm2. The bulk hardness of the films is obtained at a load of 400 mN. The increase in hardness may be attributed to the cross linking effect. There is an exponential increase in conductivity with log frequency and the effect of irradiation is significant at higher fluences. The dielectric constant/loss is observed to change significantly due to irradiation. It has been found that dielectric response in both pristine and irradiated samples obey the Universal law and is given by ɛf n−1. These results were corroborated with structural changes observed in FTIR spectra of irradiated samples.  相似文献   

3.
SiO2–PbO–Bi2O3 glasses having the composition of 35SiO2xPbO–(65−x)Bi2O3 (where x = 5, 10, 15, 20, 25, 35, 45; in mol%) have been prepared using the conventional melting and annealing method. Density, molar volume and Vickers microhardness of the prepared glasses were measured. Infrared (IR) and UV–visible spectroscopic techniques were used for structural studies of these glasses. Density as well as the microhardness increase systematically and, conversely, the molar volume decreases with increasing the lead oxide content. This behavior can be explained by the correlation with the glass structure. Increasing the lead oxide content (≥20 mol%) increases the network former PbO4 groups which can play an important role in increasing the connectivity and compactness of the glass matrix via increasing the cross-linking with the other constituent silicate and bismuthate structural units. The increased compactness may explain, in turn, the increase of the density and microhardness. IR spectra reinforce the idea that bismuth participates in the glassy network predominantly as BiO6 octahedral structural units. UV–VIS optical absorption spectra revealed UV-charge transfer absorption bands related to the contribution of Pb2+ ions in the region 350–385 nm; in addition to the extrinsic absorption of trace iron impurities in the range 220–290 nm. In the visible region, three optical bands in the ranges 415–435, 605–650 and 880–890 nm were correlated with the contribution of electronic transitions in Bi3+ ions. Calculation of the optical mobility gap and the width of the energy tail of glass from the UV–VIS absorption indicated a slight increase followed by a decrease in their values. The behavior change occurred at the glass in which PbO content is 20 mol% where lead oxide starts to participate into the glassy matrix as a network former. The combination of analytical FTIR and UV–visible spectroscopy provided a consistent picture of structure–property relations in this glass system.  相似文献   

4.
In the present study the polyethersulphone (PES) membranes of thickness (35 ±2) μm were prepared by solution cast method. The permeability of these membranes was calculated by varying the temperature and by irradiation of α ions. For the variation of temperature, the gas permeation cell was dipped in a constant temperature water bath in the temperature range from 303–373 K, which is well below the glass transition temperature (498 K). The permeability of H2 and CO2 increased with increasing temperature. The PES membrane was exposed by a-source (95Am241) of strength (1 μ Ci) in vacuum of the order of 10−6 torr, with fluence 2.7 × 107 ions/cm2. The permeability of H2 and CO2 has been observed for irradiated membrane with increasing etching time. The permeability increases with increasing etching time for both gases. There was a sudden change in permeability for both the gases when observed at 18 min etching. At this stage the tracks are visible with optical instrument, which confirms that the pores are generated. Most of pores seen in the micrograph are circular cross-section ones.  相似文献   

5.
《Vacuum》2012,86(3):275-279
We have investigated neutron irradiation effects on the optical, structural and chemical properties of polyallyl diglycol carbonate (PADC) polymer, commercially named as CR-39. For this purpose, PADC samples were exposed with 4 MeV Am–Be neutron source at fluences varying from 2.36 × 106 to 5.94 × 107 n/cm2. The modifications so induced were analyzed using UV–Visible spectroscopy, X-ray diffraction Measurement (XRD), Photoluminescence (PL) and Fourier Transform infrared (FTIR) spectroscopy in the total attenuation reflection (ATR) mode. UV–Vis spectra of pristine and neutron irradiated PADC polymer sheets exhibit a decreasing trend in optical band gap. This decline in optical band gap with increasing fluence has been discussed on the basis of neutron irradiation induced defects in PADC. The XRD pattern of PADC shows the decreasing intensity of peak positions with increasing in fluence, which suggest that semicrystallinity of PADC changes slightly to amorphous phase after irradiation. At low fluence, crystallinity was found to increase but at higher fluence, it decreased which could be ascribed to neutron- induced defects in the polymer samples. Crystallite size calculated using Scherrer formula indicates a change and reflects the formation of disordered system in the irradiated polymer samples. The PL spectra show that the intensity of PL peak decreased with increase in fluence, which may be due to the disordered system via creation of defects in the irradiated polymer. The FTIR spectrum shows an overall reduction in intensity of the typical bands, indicating the degradation of PADC polymer after irradiation. These results so obtained can be used successfully in dosimetery using well reported protocols.  相似文献   

6.
Indium nanoparticles were formed by laser etching an InP (100) wafer in a 10% chlorine–helium atmosphere maintained at ~5–8 × 10−5 Torr. The wafer was irradiated by a homogenized ultraviolet beam with a series of 50–4500 pulses at a fluence of 230 mJ/cm2. The surface was also irradiated using fluences from 50 to 340 mJ/cm2 with 600 pulses. The irradiated surfaces were studied using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and Raman spectroscopy. Raman spectroscopy confirmed that the irradiated surface layer remains crystalline. According to EDS analysis, the surface particles are composed primarily of indium. SEM images show that the number of pulses and the pulse intensity can control the size distribution of the particles.  相似文献   

7.
The effects of different laser incident intensity on the optical characteristics of PM-355 nuclear track detector have been studied by using photoluminescence (PL) and UV–visible spectroscopic techniques. The polymers were irradiated with alpha particles with close contact to 241Am (in contact with a mean energy 5.49 MeV) and then exposed to continues waveguide (cw) laser with different incident intensity. A noticeable decrease in the photoluminescence spectral intensity was observed with increasing laser incident intensity. From the UV–visible spectra, it is found that a shift in the absorption edge towards a longer wavelength with increasing laser incident intensity can be readily observed. The absorption peak with increasing incident intensity is seen to change into a broad one. The optical band gaps determined from the UV–visible spectra were found to decrease with the increase of cw laser doses. The calculations were made of the number of carbon atoms per conjugation length, N and number of carbon atoms per clusters, M embedded in the network of polymers. The effective of etching time on optical power limiting behavior of sample was also investigated. The optical power limiting behavior was found to vary with the etching time. It also shows a very good optical limiting behavior with a limiting threshold varying from 16.6 to 19.9 mW. These results indicate that the PM-355 nuclear track detector is a promising candidate for applications in the nonlinear optic field.  相似文献   

8.
We have investigated neutron irradiation effects on the optical, structural and chemical properties of polyallyl diglycol carbonate (PADC) polymer, commercially named as CR-39. For this purpose, PADC samples were exposed with 4 MeV Am-Be neutron source at fluences varying from 2.36 × 106 to 5.94 × 107 n/cm2. The modifications so induced were analyzed using UV-Visible spectroscopy, X-ray diffraction Measurement (XRD), Photoluminescence (PL) and Fourier Transform infrared (FTIR) spectroscopy in the total attenuation reflection (ATR) mode. UV-Vis spectra of pristine and neutron irradiated PADC polymer sheets exhibit a decreasing trend in optical band gap. This decline in optical band gap with increasing fluence has been discussed on the basis of neutron irradiation induced defects in PADC. The XRD pattern of PADC shows the decreasing intensity of peak positions with increasing in fluence, which suggest that semicrystallinity of PADC changes slightly to amorphous phase after irradiation. At low fluence, crystallinity was found to increase but at higher fluence, it decreased which could be ascribed to neutron- induced defects in the polymer samples. Crystallite size calculated using Scherrer formula indicates a change and reflects the formation of disordered system in the irradiated polymer samples. The PL spectra show that the intensity of PL peak decreased with increase in fluence, which may be due to the disordered system via creation of defects in the irradiated polymer. The FTIR spectrum shows an overall reduction in intensity of the typical bands, indicating the degradation of PADC polymer after irradiation. These results so obtained can be used successfully in dosimetery using well reported protocols.  相似文献   

9.
Multiharmonic ac-magnetic susceptibilityx 1,x 2,x 3, of neutron irradiated Li-doped YBa2Cu3O7−x has revealed a nonmonotonic dependence of all harmonics on the neutron fluence. The irradiation has a strongly depressive influence on the intergrain connection suggesting an increase of the effective thickness of the intergranular Josephson junction at a neutron fluence of 0.98 × 1017 cm−2. Less damaged are the intragrain properties. A spectacular enhancement of the superconducting intragranular properties reflected in the characteristics of all harmonics was observed at highest fluence φ=9.98 × 1017 cm−2. We assume that this effect results from the development of a space inhomogeneous distribution with alternating defectless and defect-rich regions.  相似文献   

10.
Manganese doped zinc sulfide nanoparticles are fabricated on polyvinyl alcohol dielectric matrix. They are bombarded with energetic chlorine ions (100 MeV). The size of the crystallites is found to increase with ion fluence due to melting led grain growth under ion irradiation. The increased size as a result of grain growth has been observed both in the optical absorption spectra in terms of redshift and in electron microscopic images. The photoluminescence (PL) study was carried out by band to band excitation (λex = 220 nm) upon ZnS : Mn, which results into two emission peaks corresponding to surface states and Mn+2 emission, respectively. The ion fluence for irradiation experiment so chosen were 1 × 1011, 5 × 1011, 5 × 1012 and 1013 Cl/cm2.  相似文献   

11.
Multiharmonic ac-magnetic susceptibility χ1, χ2, χ3, of neutron irradiated Li-doped YBa2Cu3O7− x has revealed a nonmonotonic dependence of all harmonics on the neutron fluence. The irradiation has a strongly depressive influence on the intergrain connection suggesting an increase of the effective thickness of the intergranular Josephson junction at a neutron fluence of 0.98 × 1017 cm−2. Less damaged are the intragrain properties. A spectacular enhancement of the superconducting intragranular properties reflected in the characteristics of all harmonics was observed at highest fluence Φ = 9.98 × 1017 cm−2. We assume that this effect results from the development of a space inhomogeneous distribution with alternating defectless and defect-rich regions.  相似文献   

12.
A new donor–acceptor type poly{2-(3,4-didecyloxythiophen-2-yl)-5-[3,4-diphenyl-5-(1,3,4-oxadiazol-2-yl)thiophen-2-yl]-1,3,4-oxadiazole} (P1) has been designed and synthesized starting from thiodiglycolic acid, 1,2-diphenylethane-1,2-dione, and diethyl oxalate through multi-step reactions using precursor polyhydrazide route. The charge-transporting and linear optical property of the polymer has been investigated by cyclic voltammetric, UV–visible, and fluorescence emission spectroscopic studies. The UV–visible absorption spectrum of polymer in thin film form showed maxima at 420 nm. The polymer displayed bluish-green fluorescence both in solution and thin film form. The optical band gap is determined to be 2.27 eV. Third-order nonlinear optical property of the new polymer has been investigated at 532 nm using single beam Z-scan and degenerate four wave mixing (DFWM) techniques with nanosecond laser pulses. The absorptive nonlinearity observed for the polymer P1 is of optical limiting type, which arises due to an “effective” three-photon absorption (3PA) process. The third-order nonlinear optical susceptibility (χ(3)) of the polymer is found to be 0.831 × 10–12 esu. Both linear and nonlinear optical studies revealed that the new polymer (P1) is a promising material for applications in photonic devices.  相似文献   

13.
Cadmium sulphide nanoparticles were synthesized by chemical displacement reaction method using cadmium nitrate as cadmium source and ammonium sulphide as sulphur source. The CdS samples are characterized using X-ray diffraction, UV–Vis spectroscopy, FTIR spectroscopy, scanning electron microscopy and impedance spectroscopy. CdS nanoparticles are found to possess cubic structure with the crystallite size ~10 nm. The absorption spectra of synthesized CdS nanoparticles revealed the blue shift in excitonic transitions with respect to CdS bulk material, clearly confirming the formation of nanoparticles. The dielectric properties of CdS nanoparticles are studied in the frequency range 103–107 Hz at room temperature. The dielectric properties of CdS nanoparticles are found to be significantly enhanced specially in the low frequency range due to confinement.  相似文献   

14.
Metal-induced crystallization (MIC) process was employed to crystallize hydrogenated amorphous silicon carbide (a-SiC:H) films deposited by PECVD on n-type Si substrate. To optimize the crystallization process, Aluminum thin films of different thicknesses were deposited on a-SiC:H films which were then annealed at 600 °C in N2 environment for 1 h. UV–visible spectrophotometer, atomic force microscopy (AFM) and hall measurement system were used to characterize the films. It was observed from the UV–visible spectrum that the films crystallized using higher Al thickness show absorption in the visible range whereas the samples crystallized with lower Al thickness did not show absorption in the visible range but shows large absorption above the bandgap of the material. Considering UV–visible and Hall measurement data it can be concluded that the sample crystallized with 50 nm of Al can be a good candidate for SiC–Si hetero-junction solar cells.  相似文献   

15.
Natural diamond detector (NDD) performance was studied up to a neutron fluence of 1015 neutron/cm2. The variations of the NDD spectrometric response to incident α-particles from 241Am source after exposure to fast neutron fluences up to 3×1016 n/cm2 were examined. No significant variations up to the level of 1014 n/cm2 were observed. Degradation of charge collection efficiency at higher fluences is reported. No remarkable increase of the NDD leakage current and count rate change had been observed up to a neutron fluence of 3×1016 n/cm2. The charge collection efficiency variations of neutron irradiated diamond spectrometer were studied ex situ under γ-rays, β-radiation and visible light excitation. Charge collection efficiency restoration up to 75% level and the NDD performance stabilization by extrinsic low-intensity visible light (550 nm<λ<800 nm) or intrinsic excitations have been demonstrated.  相似文献   

16.
Experimental data of infrared (IR) absorption measurements carried out on fast neutron irradiated carbon rich Cz–Si crystals were studied. Data from similar crystals, subjected prior to irradiation to thermal treatments at 1000 °C [(HT)] and thermal treatments at 1000 °C under high hydrostatic pressure [(HTHP)] of 11Kbar, were also studied. The time duration of both treatments was 5 h. After the irradiation the intensities of most of the observed bands were always stronger in the pre-treated material. Transformation of the defects upon post-irradiation isochronal anneals was investigated. Two out of six IR bands of the CiCs defect in the neutral charge state, at 543.5 and 635 cm−1, were detected at room temperature [(RT)]. It is argued that another two bands at 918 and 1006 cm−1 arising in the spectra upon annealing of the CiCs bands are associated with the same carbon-related structure giving rise to the Si-PT4 electron paramagnetic resonance (EPR) spectrum. A band at 533 cm−1 shows the same thermal evolution with a defect giving rise to the Si-P6 EPR spectrum attributed to a multi-interstitial cluster in silicon. Differences observed in the evolution curves of the CiCs(SiI) defect (987, 993 cm−1) between the as-grown and the pre-treated samples are considered and discussed.  相似文献   

17.
Physical and chemical responses of 70 MeV carbon ion irradiated Kapton-H polymer were studied by using UV-visible, FTIR and XRD techniques. The ion fluences ranging from 9.3 × 1011−9 × 1013 ions cm−2 were used. Recorded UV-visible spectra clearly showed a decrease in absorption initially with fluence, but for the higher fluences it showed a recovery characteristic. A decrease in band-gap energy of 0.07 eV was observed. The FTIR analysis indicated the high resistance to radiation induced degradation of polymer. The diffraction pattern of Kapton-H indicates that this polymer is semi-crystalline in its nature. In case of irradiated one, there was an average increase of crystallite size by 20%, but diffuse pattern indicates that there was a decrease in crystallinity, which may be attributed to the formation of complex structure induced by the cross-linking of the polymeric chains.  相似文献   

18.
We have measured the EPR and induced optical absorption spectra of several fluoroaluminate glasses prepared under different redox conditions and containing NH4HF2, EuF3, or Eu2O3 additions. Analysis of spectra taken after gamma irradiation to various doses and isothermal bleaching kinetics of individual absorption bands indicates that the color centers responsible for induced absorption in the UV spectral region are hole traps related to either oxygen (45000 and 42000 cm?1) or fluorine (37500 cm?1). In the visible range, we have revealed three absorption bands. We assume that the 17400 cm?1 absorption is due to an electron trap involving Y3+. Our data suggest some evidence that paramagnetic hole centers and electronic color centers may be formed in the same events.  相似文献   

19.
The effect of fast-neutron irradiation on the structure of fused silica has been studied by IR reflection spectroscopy in a wide range of neutron fluences, from 1017 to 1021 n/cm2. The spectral characteristics of the bending and stretching modes of the bridge bonds in silica have been shown to be nonlinear functions of neutron fluence. The kinetics of radiation-induced changes in the optical properties of silica in the UV through visible spectral region have been analyzed in relation to those in its structure and microscopic characteristics. A strong correlation has been found between the dose dependences of the optical and structural properties of silica, such as the 465-nm luminescence intensity, the intensity and position of the amorphous halo, the reflectivity and frequency of the IR bands at 1125 and 480 cm?1, the density of the material, and its ionic polarizability. We assume that there is a threshold dose in the range 1019 to 1020 n/cm2 which produces sharp changes in the optical and structural properties of SiO2 due to a transition to a metamict-like state. An analytical expression has been derived for the radiation-induced changes in the intensity of the first halo. The driving force and mechanism of the radiation-induced structural changes in fused SiO2 have been tentatively identified.  相似文献   

20.
Semiconductor nanocrystals (NCs) have received much interest for their optical and electronic properties. When these NCs dispersed in polymer matrix, brightness of the light emission is enhanced due to their quantum dot size. The CdCuS NCs have been synthesized by chemical route method and then dispersed in PMMA matrix. These nanocomposite polymer films were irradiated by swift heavy ion (SHI) (100 MeV, Si+7 ions beam) at different fluences of 1 × 1010 and 1 × 1012 ions/cm2 and then compared their structural and optical properties by XRD, atomic force microscopy, photoluminescence, and UV-Vis spectroscopy before and after irradiation. The XRD spectra showed a broad hump around 2θ ≈ 11·83° due to amorphous PMMA and other peaks corresponding to hexagonal structure of CdS nanocrystals in PMMA matrix. The photoluminescence spectra shows a broad peak at 530 nm corresponding to green emission due to Cu impurities in CdS. The UV-Vis measurement showed red shift in optical absorption and bandgap changed from 4·38–3·60 eV as the irradiation fluency increased with respect to pristine CdCuS nanocomposite polymer film.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号