首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
以乳清蛋白为原料,添加中性蛋白酶诱导其凝胶,研究不同的参数(pH、凝胶温度、酶与底物比E/S、氯化钙浓度、黄原胶添加量)对凝胶性质影响并优化诱导条件。在单因素实验的基础上,利用模糊数学结合响应曲面法进行分析。结果表明,pH、凝胶温度、酶与底物比E/S、黄原胶添加量都会对乳清蛋白凝胶的质构性质和保水性产生不同程度影响,且最佳诱导条件为:pH6.5、凝胶温度47℃、酶与底物浓度比0.8%、氯化钙2mmol/L、黄原胶0.015%;该条件下凝胶的综合素质得分达到0.720。最后制得的凝胶成品色泽乳黄、质地和口感均类似于脂肪。  相似文献   

2.
以蔗糖为食品风味成分,封装于乳清分离蛋白凝胶内,探讨pH值、温度、载药量、释放液离子浓度对乳清分离蛋白凝胶释放蔗糖的动力学机制。结果表明:蔗糖在乳清分离蛋白凝胶中的释放过程符合Korsmeyer-Peppas模型,且拟合相关系数R2在0.95~0.99之间,扩散常数n均小于0.45,符合Fick扩散机理。动力学常数K随pH值、温度、以及释放液离子浓度(0.05~0.10 mol/L)的增加而增大,随载药量的增加而减小。乳清分离蛋白凝胶具有环境应答性,以其为载体的物质释放过程受环境温度、pH值、载药量、释放液离子浓度等因素影响。通过调节释放体系的pH值、温度、载药量、释放液离子浓度可以达到控制载物释放的目的。  相似文献   

3.
以乳清浓缩蛋白(WPC80)为研究对象,分析了温度、时间、料液浓度、钙离子强度、乳糖浓度及pH值对其凝胶的影响,并通过测试样品凝胶特性。确定了WPC80凝胶的最佳工艺条件:配置质量分数为9%的WPC80溶液,室温400 r/min搅拌30 min至样品全部溶解;4℃储存10 h以上,便于蛋白溶解及水合;添加质量分数为0.12%的氯化钙;65℃,转速为80 r/min恒温水浴30 min;调节样品pH值为5.5;85℃水浴静置20 min形成凝胶。  相似文献   

4.
以乳清蛋白为原料,选择碱性蛋白酶水解乳清蛋白.通过四因素三水平正交试验设计方法对碱性蛋白酶水解乳清蛋白的工艺条件[酶-底浓度比(E/S),pH,水解温度,水解时间]进行优化,确定了碱性蛋白酶酶解乳清蛋白的最佳水解条件为酶-底浓度比0.05,pH8.0,反应温度60℃,水解200min,此条件下水解度为21.92%.各因素对水解度的影响主次顺序为酶-底浓度比(E/S)>水解温度>水解时间>pH.  相似文献   

5.
本实验研究混合体系pH 值、NaCl 浓度和CaCl2 浓度对低酯果胶与乳清蛋白复合凝胶的硬度和持水能力的影响。响应面分析结果表明,pH 值、NaCl 浓度和CaCl2 浓度对凝胶性质有显著影响。低酯果胶和乳清分离蛋白复合凝胶的最佳条件为pH6、NaCl 浓度0.2mol/L、CaCl2 浓度10mmol/L,在此条件下制得的复合凝胶强度接近200g,持水能力接近75%。  相似文献   

6.
乳清蛋白凝胶性能的研究   总被引:3,自引:0,他引:3  
阐述了溶液的pH值和离子强度对乳清蛋白分散体系的溶胶--凝胶过渡状态的影响,确定了乳清蛋白形成凝胶的的极限浓度和凝胶形成所需的最低加热温度,并论述了环境因子(pH,离子强度,蛋白质浓度)对乳清蛋白凝胶状态的影响。  相似文献   

7.
为改善菜籽蛋白质的凝胶特性,采用谷氨酰胺转氨酶(TG)以单因素试验和正交试验研究影响菜籽分离蛋白(RPI)凝胶特性的主要因素-- TG 质量浓度、pH 值、反应温度和反应时间。结果表明:反应温度和 pH 值对菜籽分离蛋白凝胶性的影响显著,同时得到谷氨酰胺转氨酶改性菜籽蛋白凝胶特性的最佳工艺条件,RPI 质量浓度1.5g/10mL、加酶量50U/g RPI、pH9.0、反应温度40℃、反应时间20min。  相似文献   

8.
采用哈克流变仪对不同分子量葡聚糖与大豆7S蛋白混合体系的凝胶流变学性质进行研究。结果表明:葡聚糖与大豆7S蛋白混合体系形成的蛋白多糖凝胶相对单一浓度的大豆7S蛋白凝胶具有较高的弹性模量;同分子量的葡聚糖与大豆7S蛋白混合体系形成的蛋白多糖凝胶黏弹性质随葡聚糖浓度增加而增加;同浓度葡聚糖与大豆7S蛋白混合体系形成的蛋白多糖凝胶黏弹性质随加入葡聚糖分子量的增加而增加;同浓度同类型葡聚糖体系凝胶形成的起始温度Tp0.25相似文献   

9.
以乳清蛋白为研究对象,研究了乳清蛋白浓度、温度、加热时间、pH值、金属离子等因素对乳清蛋白凝胶形成的作用。结果显示,乳清蛋白形成凝胶的基本条件是乳清水溶液浓度大于0.133g/mL,温度高于85℃±2℃,当温度在85℃±2℃~90℃±2℃之间,凝胶形成时间随乳清蛋白浓度变大而减少,在沸水中乳清蛋白浓度对凝胶形成时间影响不大,在19min左右;酸性条件下乳清蛋白形成凝胶的最适pH为5.3,pH小于1.2在沸水中加热30min,乳清蛋白形成碎块状凝胶,碱性条件下形成凝胶的最适pH为8.3,pH大于12.8在沸水中加热30min,乳清蛋白变为红色;钙离子的添加可使乳清蛋白形成凝胶所需时间减少到6min。  相似文献   

10.
本实验研究在一定的加热条件下猪血浆蛋白质量浓度、加热温度、加热时间、离子种类、离子强度和pH 值对猪血浆蛋白热诱导凝胶的质构、持水性等性质的影响。利用质构仪测定猪血浆蛋白热诱导凝胶的硬度和黏附性,利用离心的方法测定凝胶的持水性。结果表明,在80℃下加热45min,猪血浆蛋白质量浓度超过6g/100mL可以形成凝胶,并且随蛋白质量浓度的增大,凝胶强度和持水性也增大;凝胶强度随pH 值(3~9)增加而增大,pH5 时凝胶的持水性最小,pH3 时最大;NaCl 浓度0.2mol/L,CaCl2 浓度0.6mol/L 时,凝胶硬度最大。实验得出,猪血浆蛋白热诱导凝胶的质构特性及持水性受许多因素影响,在实际生产中应该控制加热条件,以获得高质量的凝胶。  相似文献   

11.
探究柠檬酸处理对提高乳清分离蛋白凝胶特性的作用,并通过响应面法对其工艺进行优化。通过单因素试验,研究乳清分离蛋白浓度及柠檬酸浓度对其凝胶特性的影响。在单因素试验基础上,以乳清分离蛋白浓度、柠檬酸浓度两个因素为响应因素,以凝胶硬度和保水性为响应值进行中心复合试验设计(central composite design,CCD),进一步对其凝胶条件进行研究与优化。结果表明,当乳清分离蛋白浓度为12%,柠檬酸浓度为0.3%时,乳清分离蛋白的凝胶特性得到显著改善,其凝胶硬度和保水性分别达到1813.82g和88.56%,与模型预测值1847.14g和89.0219%无显著差异。  相似文献   

12.
离子强度和温度对乳清蛋白凝胶的影响   总被引:2,自引:0,他引:2  
王岩  王存堂  蒋继丰  渠磊 《食品科学》2010,31(1):123-126
本实验主要研究凝胶温度和CaCl2 浓度对乳清蛋白冷凝胶的影响。结果表明:较低的凝胶温度和增加CaCl2浓度能够致使乳清蛋白形成清亮的凝胶;在0、10、20℃凝胶温度条件下,增加CaCl2 浓度使得凝胶硬度有所增加;乳清蛋白凝胶的持水性在凝胶温度为0、10℃,CaCl2 浓度为20、40mmol/L 时受到影响;除了0℃ 和20mmol/LCaCl2 条件下,低温能够使乳清蛋白形成较高的凝胶硬度和持水性。凝胶温度和CaCl2 浓度是影响乳清蛋白冷凝胶的关键因素。  相似文献   

13.
《Journal of dairy science》2022,105(5):3746-3757
ε-Polylysine (ε-PL) is a natural preservative of antimicrobial peptides with broad spectrum and high antibacterial properties. The electrostatic complex delivery system formed by ε-PL and whey protein can be used to maintain the stability of ε-PL and solve the problem of limited application of protein-based food. This work aimed to study the interaction between ε-PL and whey protein by multiple characterization methods. The spectroscopy results showed static quenching type and new stretching of C=O for ε-PL–whey protein complexes. Microstructure studies showed that the combination of ε-PL and whey protein made the structure of the complexes become rough and dense. The interaction between ε-PL and whey protein could improve the stability of the complexes system during storage. Additionally, the interaction affected critical gel temperatures and gel texture properties of complexes with change of whey protein concentration, mass ratio of ε-PL to whey protein, pH value in alkaline solutions, and ion concentration. Overall, this study confirmed the interaction between ε-PL and whey protein, and it will provide a reference for the application of ε-PL in protein food matrix.  相似文献   

14.
In order to develop a process for the production of a whey protein concentrate (WPC) with high gel strength and water-holding capacity from cheese whey, we analyzed 10 commercially available WPC with different functional properties. Protein composition and modification were analyzed using electrophoresis, HPLC, and mass spectrometry. The analyses of the WPC revealed that the factors closely associated with gel strength and water-holding capacity were solubility and composition of the protein and the ionic environment. To maintain whey protein solubility, it is necessary to minimize heat exposure of the whey during pretreatment and processing. The presence of the caseinomacropeptide (CMP) in the WPC was found to be detrimental to gel strength and water-holding capacity. All of the commercial WPC that produced high-strength gels exhibited ionic compositions that were consistent with acidic processing to remove divalent cations with subsequent neutralization with sodium hydroxide. We have shown that ultrafiltration/diafiltration of cheese whey, adjusted to pH 2.5, through a membrane with a nominal molecular weight cut-off of 30,000 at 15 degrees C substantially reduced the level of CMP, lactose, and minerals in the whey with retention of the whey proteins. The resulting WPC formed from this process was suitable for the inclusion of sodium polyphosphate to produce superior functional properties in terms of gelation and water-holding capacity.  相似文献   

15.
目的:研究乳清多肽对猪肉糜氧化和凝胶特性的影响作用。方法:实验分为6 组,第1组为空白对照组,第2组加入20%(质量分数,下同)的乳清分离蛋白未水解物,第3~5组中分别加入10%、15%、20%的乳清分离蛋白水解物冻干粉,第6组中加入0.02%的丁基羟基茴香醚(butylated hydroxyanisole,BHA)。在肉糜冷藏7 d过程中测定过氧化值、羰基含量、巯基含量及凝胶的质构、白度、保水性、流变学特性的变化。结果:在贮藏初期,处理组和对照组之间无显著差异(P>0.05)。贮藏7 d后,添加乳清分离蛋白水解物组在抑制氧化和保护凝胶品质方面都要比对照组和未水解组好(P<0.05)。其中添加20%乳清分离蛋白水解物冻干粉的储能模量的极大值最高,而在抑制脂肪、蛋白氧化及保护凝胶质构、保水性方面,添加15%乳清分离蛋白水解物冻干粉效果更好(P<0.05),接近甚至达到了BHA组水平。结论:乳清多肽具有抑制猪肉糜氧化和保护肉糜凝胶品质的作用。  相似文献   

16.
Gel Point of Whey and Egg Proteins Using Dynamic Rheological Data   总被引:1,自引:0,他引:1  
The gel point temperatures of coagulation type proteins and gelation type proteins were determined by extrapolating the rapidly rising phase of the storage modulus G’back to the temperature axis. The gelation onset. temperatures of the concentration-independent proteins oval-bumin, ovotransferrin, and BSA were 81°C, 62°C, and 75°, respectively, Gelation of whey protein isolate and egg white gels, both concentration-dependent, was presumably due to disulfide bonds formed by the interactions of the concentration-independent proteins: α-lac-talbumin and β-lactoglobulin, and ovalbumin and ovotransferrin, respectively. Moreover, the incipient gel temperature of whey proteins decreased when the concentration of whey proteins increased.  相似文献   

17.
蛋白质-多糖凝胶具有良好的稳定性和机械强度,在稳定和传递生物活性物质、营养强化剂方面的应用前景广阔。该研究以乳清分离蛋白、高酰基结冷胶为原料制备热诱导混合凝胶,分析高酰基结冷胶对乳清分离蛋白-高酰基结冷胶混合凝胶的凝胶强度、保水性及显微结构等,揭示乳清蛋白-高酰基结冷胶凝胶形成机理。结果表明,高酰基结冷胶促使蛋白质巯基暴露从而使凝胶形成稳定结构,提高混合凝胶的凝胶强度和保水性,且随着高酰基结冷胶含量增加而显著增大,其质量浓度为4 g/L时,复合凝胶的凝胶强度最大,为26.97 g;保水性最好,为97.41%;透光率最低,为1.87%。温度扫描结果表明,增加高酰基结冷胶可以提高乳清分离蛋白的相转变温度,傅里叶红外光谱显示,乳清分离蛋白与高酰基结冷胶存在分子间作用力,扫描电子显微镜表明高酰基结冷胶诱导混合凝胶形成结构紧密的三维网络结构。该研究为拓展乳清分离蛋白和结冷胶的新型凝胶食品,提高传统食品的质量,改善食品的加工工艺提供基础理论数据。  相似文献   

18.
采用L-组氨酸(L-His)作为蛋白凝胶功能性的增强剂,将其加入乳清分离蛋白溶液中制备热诱导凝胶,研究L-His对乳清蛋白结构及其凝胶特性的影响。结果表明:在乳清蛋白等电点(pI 5.2)时蛋白形成尺度约1 700 nm、具有极小比表面积且几乎不带电的蛋白聚集体,远离蛋白等电点时则所形成的聚集体大小约为400 nm;L-His抑制蛋白聚集体的形成而减小粒径、显著提高聚集体比表面积,促进蛋白分子结构展开并提高其带电量。在经历热诱导后,乳清蛋白在其等电点时形成持水性差的白色凝胶,而在其他pH值时则形成持水性高的黄色凝胶且越远离等电点,胶体黄度值越大;L-His的加入对凝胶颜色变化无显著影响,但能够显著提高凝胶的持水性(P<0.05);有效提高凝胶的质地特性,特别是在pH 7.59和pH 9.74时显著提高乳清蛋白凝胶的弹性及咀嚼性(P<0.05)。这些质构变化可能主要归结于L-His改变了凝胶内的氢键、二硫键和疏水作用力的重排。总之,L-His修饰乳清蛋白结构而改变其凝胶性能且同时受到pH值的影响。  相似文献   

19.
Concentrated protein gels were prepared using native whey protein isolate (WPI) and WPI based microparticles. WPI microparticles were produced by making gel pieces from a concentrated WPI suspension (40% w/w), which were dried and milled. The protein within the microparticles was denatured and the protein concentration after drying was similar to the native WPI powder. WPI microparticles had irregular shape with an average size of about 70 μm. They absorbed water when dispersed in water, but the dispersion did not gel upon heating. Replacing part of the native WPI powder with WPI microparticles in the protein gel resulted in lower gel stiffness compared with a gel with the same overall protein concentration but without microparticles. However, microparticles also strengthened the continuous phase because they take up water from this phase. This might increase gel stiffness more than would be expected from an inert particle/filler. There was also good bonding between the microparticles and the WPI continuous phase in the gel, which contributed to gel stiffness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号