首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hoge FE  Wright CW  Lyon PE  Swift RN  Yungel JK 《Applied optics》1999,38(36):7431-7441
Oceanic radiance model inversion methods are used to develop a comprehensive algorithm for retrieval of the absorption coefficients of phycourobilin (PUB) pigment, type I phycoerythrobilin (PEB) pigment rich in PUB, and type II PEB deficient in PUB pigment (together with the usual "big three" inherent optical properties: the total backscattering coefficient and the absorption coefficients of chromophoric dissolved organic matter (CDOM)-detritus and phytoplankton). This fully modeled inversion algorithm is then simplified to yield a hybrid modeled-unmodeled inversion algorithm in which the phycoerythrin (PE) absorption coefficient is retrieved as unmodeled 488-nm absorption (which exceeds the modeled phytoplankton and the CDOM-detritus absorption coefficients). Each algorithm was applied to water-leaving radiances, but only hybrid modeled-unmodeled inversions yielded viable retrievals of the PE absorption coefficient. Validation of the PE absorption coefficient retrieval was achieved by relative comparison with airborne laser-induced PEB fluorescence. The modeled-unmodeled retrieval of four inherent optical properties by direct matrix inversion is rapid and well conditioned, but the accuracy is strongly limited by the accuracy of the three principal inherent optical property models across all four spectral bands. Several research areas are identified to enhance the radiance-model-based retrievals: (a) improved PEB and PUB absorption coefficient models, (b) PE spectral shifts induced by PUB chromophore substitution at chromophore binding sites, (c) specific absorption-sensitive phytoplankton absorption modeling, (d) total constituent backscattering modeling, (e) unmodeled carotinoid and phycocyanin absorption that are not now accounted for in the chlorophyll-dominated phytoplankton absorption coefficient model, and (f) iterative inversion techniques to solve for six constituents with only five radiances. Although considerable progress has been made toward the satellite recovery of PE absorption, the maturity of the retrieval is presently insufficient for routine global application. Instead it must currently be used on a regional basis where localized ship and aircraft validation can be made available. The algorithm was developed for the MODIS (Moderate-Resolution Imaging Spectroradiometer) sensor but is applicable to any sensor having comparable band locations.  相似文献   

2.
Hoge FE  Lyon PE 《Applied optics》1999,38(9):1657-1662
Inherent optical property (IOP) spectral models for the phytoplankton absorption coefficient, chromophoric dissolved organic matter (CDOM) absorption coefficient, and total constituent backscattering (TCB) coefficient are linear in the reference wavelength IOP and nonlinear in the spectral parameters. For example, the CDOM absorption coefficient IOP a(CDOM)(lambda(i)) = a(CDOM)(lambda(ref))exp[-S(lambda(i)- lambda(ref))] is linear in a(CDOM)(lambda(ref)) and nonlinear in S. Upon linearization by Taylor's series expansion, it is shown that spectral model parameters, such as S, can be concurrently accommodated within the same conventional linear matrix formalism used to retrieve the reference wavelength IOP's. Iteration is used to adjust for errors caused by truncation of the Taylor's series expansion. Employing an iterative linear matrix inversion of a water-leaving radiance model, computer simulations using synthetic data suggest that (a) no instabilities or singularities are introduced by the linearization and subsequent matrix inversion procedures, (b) convergence to the correct value can be expected only if starting values for a model parameter are within certain specific ranges, (c) accurate retrievals of the CDOM slope S (or the phytoplankton Gaussian width g) are generally reached in 3-20 iterations, (d) iterative retrieval of the exponent n of the TCB wavelength ratio spectral model is not recommended because the starting values must be within approximately +/-5% of the correct value to achieve accurate convergence, and (e) concurrent retrieval of S and g (simultaneously with the phytoplankton, CDOM, and TCB coefficient IOP's) can be accomplished in a 5 x 5 iterative matrix inversion if the starting values for S and g are carefully chosen to be slightly higher than the expected final retrieved values.  相似文献   

3.
The absorption coefficient of chromophoric dissolved organic matter (CDOM) at 355 nm has been retrieved from airborne laser-induced and water Raman-normalized CDOM fluorescence. Four combined airborne and ship field experiments have demonstrated that (1) the airborne CDOM fluorescence-to--water Raman ratio is linearly related to concurrent quinine-sulfate-standardized CDOM shipboard fluorescence measurements over a wide range of water masses (coastal to blue water); (2) the vicarious calibration of the airborne fluorosensor in units traceable to a fluorescence standard can be established and then maintained over an extended time period by tungsten lamp calibration; (3) the vicariously calibrated airborne CDOM fluorescence-to-water Raman ratio can be directly applied to previously developed shipboard fluorescence-to-absorption algorithms to retrieve CDOM absorption; and (4) the retrieval is not significantly affected by long-path multiple scattering, differences in attenuation at the excitation and emission wavelengths, or measurement in the 180° backscatter configuration. Airborne CDOM absorption measurements will find immediate application to (a) forward and inverse modeling of oceanic water-leaving radiance and (b) validation of satellite-retrieved products such as CDOM absorption.  相似文献   

4.
Lyon PE  Hoge FE  Wright CW  Swift RN  Yungel JK 《Applied optics》2004,43(31):5886-5892
In the upper layer of the global ocean, 2082 in situ chlorophyll biomass values (Chl) are retrieved by concurrent satellite-derived inherent optical properties (IOP). It is found that (1) the phytoplankton absorption coefficient IOP alone does not provide satisfactory (Chl) retrieval; (2) the chromophoric dissolved organic matter (CDOM) absorption coefficient IOP must also be used to obtain satisfactory retrieval through (Chl) alpha a ph + pa CDOM where p is a constant and a ph and aCDOM are, respectively, the phytoplankton and CDOM absorption coefficients; (3) the IOP-based (Chl) retrieval performance is comparable to standard satellite reflectance ratio retrievals (that have CDOM absorption intrinsically embedded within them); (4) inclusion of the total backscattering coefficient IOP does not contribute significantly to (Chl) retrieval; and (5) the new IOP-based algorithm may provide the possibility for future research to establish the actual role of extracellular CDOM from all sources in the intracellular production of chlorophyll biomass.  相似文献   

5.
McKee D  Cunningham A  Wright D  Hay L 《Applied optics》2007,46(31):7720-7729
It has been suggested that Sun induced chlorophyll fluorescence (SICF) signals could be used to estimate phytoplankton chlorophyll concentration and to investigate algal physiology from space. However, water-leaving SICF is also a product of the ambient light field. In coastal waters both algal and nonalgal materials affect the underwater light field. In this study we examine the independent impacts of varying loads of mineral suspended solids (MSS) and colored dissolved organic materials (CDOM) on water-leaving SICF signals using Hydrolight radiative transfer simulations. We show that SICF signals in coastal waters are strongly influenced by nonalgal materials. Increasing concentrations of CDOM and minerals can reduce the water-leaving SICF per unit chlorophyll by over 50% for the concentration ranges explored here (CDOM = 0 to 1 m(-1) at 440 nm, MSS=0 to 10 g m(-3)). The moderate-resolution imaging spectroradiometer (MODIS) fluorescence line height algorithm is shown to be relatively unaffected by increasing CDOM, but performance is significantly degraded by mineral concentrations greater than 5 g m(-3) owing to increased background radiance levels. The combination of these two effects means that caution is required for the interpretation of SICF signals from coastal waters.  相似文献   

6.
Model for the interpretation of hyperspectral remote-sensing reflectance   总被引:1,自引:0,他引:1  
Remote-sensing reflectance is easier to interpret for the open ocean than for coastal regions because the optical signals are highly coupled to the phytoplankton (e.g., chlorophyll) concentrations. For estuarine or coastal waters, variable terrigenous colored dissolved organic matter (CDOM), suspended sediments, and bottom reflectance, all factors that do not covary with the pigment concentration, confound data interpretation. In this research, remote-sensing reflectance models are suggested for coastal waters, to which contributions that are due to bottom reflectance, CDOM fluorescence, and water Raman scattering are included. Through the use of two parameters to model the combination of the backscattering coefficient and the Q factor, excellent agreement was achieved between the measured and modeled remote-sensing reflectance for waters from the West Florida Shelf to the Mississippi River plume. These waters cover a range of chlorophyll of 0.2-40 mg/m(3) and gelbstoff absorption at 440 nm from 0.02-0.4 m(-1). Data with a spectral resolution of 10 nm or better, which is consistent with that provided by the airborne visible and infrared imaging spectrometer (AVIRIS) and spacecraft spectrometers, were used in the model evaluation.  相似文献   

7.
The universal bio-optical algorithm of the Coastal Zone Color Scanner (CZCS) for case I waters implicitly contains an average covariance of the absorption by phytoplankton and colored dissolved organic matter (CDOM) and detritus. We made that covariance explicit by combining the CZCS algorithm with an expression for reflectance. The spectral variation of absorption by CDOM plus detritus for case I waters may be estimated by the expression a(gd(λ)) = 2a(ph)(443)*chl{exp[-0.013(λ - 443)].  相似文献   

8.
Hoge FE 《Applied optics》2006,45(10):2344-2351
It is shown that the oceanic beam attenuation coefficient can be retrieved from airborne laser-induced and depth-resolved chromophoric dissolved organic matter (CDOM) fluorescence. The radiative transfer equation (RTE) retrieval methodology does not require a laser beam spread function model since two CDOM fluorescence bands are used in conjunction with a beam attenuation spectral model, is self-normalizing since the CDOM absorption coefficient and laser beam irradiance are common to both fluorescence observational channels, and is enabled by the known isotropic phase function for CDOM fluorescence. Although this RTE analytical inversion theory is exact, the retrieval uncertainty is reduced by configuring the proposed lidar in the multiple-field-of-view beam attenuation mode to significantly diminish observation of multiple scattering. The theory can be applied over wide regions of the ocean's continental margins, estuaries, lakes, and rivers that are known to have sufficient CDOM.  相似文献   

9.
Hoge FE  Swift R  Yungel J 《Applied optics》1995,34(18):3468-3476
It is shown that airborne active-passive (laser-solar) ocean color data can be used to develop and validate oceanic radiance models. The two principal inputs to the oceanic radiance model, chlorophyll pigment and incident solar irradiance, are obtained from a nadir-viewing laser-induced fluorescence spectrometer and a zenith-viewing radiometer, respectively. The computed water-leaving radiances are validated by comparison with the calibrated output of a separate nadir-viewing radiometer subsystem. In the North Atlantic Ocean, the calculated and the observed airborne radiances are found to compare very favorably for the 443-, 520-, and 550-nm wavelengths over an ~ 170-km flight track east of St. John's, Newfoundland. The results further suggest that the semianalytical radiance model of ocean color, the airborne active (laser) fluorescence spectrometer, and the passive (solar) radiometric instrumentation are all remarkably precise.  相似文献   

10.
Wang M 《Applied optics》2007,46(9):1535-1547
In the remote sensing of the ocean near-surface properties, it is essential to derive accurate water-leaving radiance spectra through the process of the atmospheric correction. The atmospheric correction algorithm for Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) and Moderate Resolution Imaging Spectroradiometer (MODIS) uses two near-infrared (NIR) bands at 765 and 865 nm (748 and 869 nm for MODIS) for retrieval of aerosol properties with assumption of the black ocean at the NIR wavelengths. Modifications are implemented to account for some of the NIR ocean contributions for the productive but not very turbid waters. For turbid waters in the coastal regions, however, the ocean could have significant contributions in the NIR, leading to significant errors in the satellite-derived ocean water-leaving radiances. For the shortwave infrared (SWIR) wavelengths (approximately > 1000 nm), water has significantly larger absorption than those for the NIR bands. Thus the black ocean assumption at the SWIR bands is generally valid for turbid waters. In addition, for future sensors, it is also useful to include the UV bands to better quantify the ocean organic and inorganic materials, as well as for help in atmospheric correction. Simulations are carried out to evaluate the performance of atmospheric correction for nonabsorbing and weakly absorbing aerosols using the NIR bands and various combinations of the SWIR bands for deriving the water-leaving radiances at the UV (340 nm) and visible wavelengths. Simulations show that atmospheric correction using the SWIR bands can generally produce results comparable to atmospheric correction using the NIR bands. In particular, the water-leaving radiance at the UV band (340 nm) can also be derived accurately. The results from a sensitivity study for the required sensor noise equivalent reflectance, (NE Delta rho), [or the signal-to-noise ratio (SNR)] for the NIR and SWIR bands are provided and discussed.  相似文献   

11.
Contribution of Raman scattering to water-leaving radiance: a reexamination   总被引:1,自引:0,他引:1  
Gordon HR 《Applied optics》1999,38(15):3166-3174
We have reexamined the contribution of Raman scattering to the water-leaving radiance in case 1 waters by carrying out radiative transfer simulations that combine the latest reported measurements of the absorption coefficient of pure water with direct measurements of the spectral variation of the Raman-scattering coefficient. The resulting contribution of Raman scattering is then compared with experimental measurements of the water-leaving radiance, and the fractional contribution of radiance produced by Raman scattering to the total radiance measured at a given wavelength is determined. The results show that (1) the contribution of Raman scattering to the water-leaving radiance in an ocean of pure seawater is as much as 50-100% larger than earlier predictions, and (2) the Raman contribution does not decay as rapidly with increasing concentrations of chlorophyllouslike pigments C as predicted earlier. In fact, the Raman fraction for C 8% at wavelengths of interest in ocean color remote sensing and therefore cannot be ignored in ocean color modeling.  相似文献   

12.
The processing algorithms used for relating the apparent color of the ocean observed with the Coastal-Zone Color Scanner on Nimbus-7 to the concentration of phytoplankton pigments (principally the pigment responsible for photosynthesis, chlorophyll a) are developed and discussed in detail. These algorithms are applied to the shelf and slope waters of the Middle Atlantic Bight and also to Sargasso Sea waters. In all, four images are examined, and the resulting pigment concentrations are compared to continuous measurements made along ship tracks. The results suggest that over the 0.08-1.5-mg/m3 range the error in the retrieved pigment concentration is of the order of 30-40% for a variety of atmospheric turbidities. In three direct comparisons between ship-measured and satellite-retrieved values of the water-leaving radiance the atmospheric correction algorithm retrieved the water-leaving radiance with an average error of approximately 10%. This atmospheric correction algorithm does not require any surface measurements for its application.  相似文献   

13.
During the passage of a cold front in March 2002, bio-optical properties examined in coastal waters impacted by the Mississippi River indicated that westward advective flows and increasing river discharge containing high concentrations of nonalgal particles contributed significantly to surface optical variability. A comparison of seasonal data from three cruises indicated spectral models of absorption and scattering to be generally consistent with other coastal environments, while their parameterization in terms of chlorophyll (Chl) alpha concentration showed seasonal variability. The exponential slope of the colored dissolved organic matter (CDOM) averaged 0.0161+/-0.00054 nm(-1) and nonalgal absorption averaged 0.011 nm(-1) with deviations from general trends observed due to anomalous water properties. Although the phytoplankton specific absorption coefficients varied over a wide range [0.02 to 0.1 m2 (mg Chl)(-1) at 443 nm] being higher in offshore surface waters, values of phytoplankton absorption spectra at the Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) wave bands were highly correlated to modeled values. Particulate scattering characteristics were similar to observations for other coastal waters, while backscattering ratios were on average lower in phytoplankton-dominated surface waters (0.011+/-0.003) and higher in low Chl near-bottom waters (0.0191+/-0.0045). Average percent differences in remote sensing reflectance Rrs derived from modeled and in-water radiometric measurements were highest in the blue wave bands (52%) and at locations with more stratified water columns. SeaWiFS estimates of Chl and CDOM absorption derived using regional empirical algorithms were highly correlated to in situ data.  相似文献   

14.
Morel A  Antoine D  Gentili B 《Applied optics》2002,41(30):6289-6306
The bidirectionality of the upward radiance field in oceanic case 1 waters has been reinvestigated by incorporation of revised parameterizations of inherent optical properties as a function of the chlorophyll concentration (Chl), considering Raman scattering and making the particle phase function shape (beta(rho)) continuously varying along with the Chl. Internal consistency is thus reached, as the decrease in backscattering probability (for increasing Chl) translates into a correlative change in beta(rho). The single particle phase function (previously used) precluded a realistic assessment of bidirectionality for waters with Chl > 1 mg m(-3). This limitation is now removed. For low Chl, Raman emissions significantly affect the radiance field. For moderate Chl (0.1-1 mg m(-3)), new and previous bidirectional parameters remain close. The ocean reflectance anisotropy has implications in ocean color remote-sensing problems, in derivation of coherent water-leaving radiances, in associated calibration-validation activities, and in the merging of data obtained under various geometrical configurations.  相似文献   

15.
Lee Z  Carder KL  Arnone RA 《Applied optics》2002,41(27):5755-5772
For open ocean and coastal waters, a multiband quasi-analytical algorithm is developed to retrieve absorption and backscattering coefficients, as well as absorption coefficients of phytoplankton pigments and gelbstoff. This algorithm is based on remote-sensing reflectance models derived from the radiative transfer equation, and values of total absorption and backscattering coefficients are analytically calculated from values of remote-sensing reflectance. In the calculation of total absorption coefficient, no spectral models for pigment and gelbstoff absorption coefficients are used. Actually those absorption coefficients are spectrally decomposed from the derived total absorption coefficient in a separate calculation. The algorithm is easy to understand and simple to implement. It can be applied to data from past and current satellite sensors, as well as to data from hyperspectral sensors. There are only limited empirical relationships involved in the algorithm, and they are for less important properties, which implies that the concept and details of the algorithm could be applied to many data for oceanic observations. The algorithm is applied to simulated data and field data, both non-case1, to test its performance, and the results are quite promising. More independent tests with field-measured data are desired to validate and improve this algorithm.  相似文献   

16.
Existing atmospheric correction algorithms for multichannel remote sensing of ocean color from space were designed for retrieving water-leaving radiances in the visible over clear deep ocean areas and cannot easily be modified for retrievals over turbid coastal waters. We have developed an atmospheric correction algorithm for hyperspectral remote sensing of ocean color with the near-future Coastal Ocean Imaging Spectrometer. The algorithm uses lookup tables generated with a vector radiative transfer code. Aerosol parameters are determined by a spectrum-matching technique that uses channels located at wavelengths longer than 0.86 mum. The aerosol information is extracted back to the visible based on aerosol models during the retrieval of water-leaving radiances. Quite reasonable water-leaving radiances have been obtained when our algorithm was applied to process hyperspectral imaging data acquired with an airborne imaging spectrometer.  相似文献   

17.
Morel A  Gentili B 《Applied optics》1996,35(24):4850-4862
The upwelling radiance field beneath the ocean surface and the emerging radiance field are not generally isotropic. Their bidirectional structure depends on the illumination conditions (the Sun's position in particular) and on the optical properties of the water body. In oceanic case 1 waters, these properties can be related, for each wavelength λ, to the chlorophyll (Chl) concentration. We aim to quantify systematically the variations of spectral radiances that emerge from an ocean with varying Chl when we change the geometric conditions, namely, the zenith-Sun angle, the viewing angle, and the azimuth difference between the solar and observational vertical planes. The consequences of these important variations on the interpretation of marine signals, as detected by a satelliteborne ocean color sensor, are analyzed. In particular, the derivation of radiometric quantities, such as R (λ), the spectral reflectance, or [ L(w)(λ)](N), the normalized water-leaving radiance that is free from directional effects, is examined, as well as the retrieval of Chl. We propose a practical method that is based on the use of precomputed lookup tables to provide values of the f/Q ratio in all the necessary conditions[ f relates (R(λ) to the backscattering and absorption coefficients, whereas Q is the ratio of upwelling irradiance to any upwelling radiance]. The f/Q ratio, besides being dependent on the geometric configuration (the three angles mentioned above), also varies with λ and with the bio-optical state, conveniently depicted by Chl. Because Chl is one of the entries for the lookup table, it has to be derived at the beginning of the process, before the radiometric quantities R(λ) or [L(W)(λ)](N) can be produced. The determination of Chl can be made through an iterative process, computationally fast, using the information at two wavelengths. In this attempt to remove the bidirectional effect, the commonly accepted view relative to the data-processing strategy is somewhat modified, i.e., reversed, as the Chl index becomes a prerequisite parameter that must be identified prior to the derivation of the fundamental radiometric quantities at all wavelengths.  相似文献   

18.
The Moderate Resolution Imaging Spectroradiometer (MODIS) aboard the Terra spacecraft contains spectral bands that allow retrieval of solar-induced phytoplankton chlorophyll fluorescence emission radiance. Concurrent airborne laser-induced (and water-Raman normalized) phytoplankton chlorophyll fluorescence data is used to successfully validate the MODIS chlorophyll fluorescence line height (FLH) retrievals within Gulf Stream, continental slope, shelf, and coastal waters of the Middle Atlantic Bight portion of the western North Atlantic Ocean for 11 March 2002. Over the entire approximately 480-km flight line a correlation coefficient of r2 = 0.85 results from regression of the airborne laser data against the MODIS FLH. It is also shown that the MODIS FLH product is not influenced by blue-absorbing chromophoric dissolved organic matter absorption. These regional results strongly suggest that the FLH methodology is equally valid within similar oceanic provinces of global oceans.  相似文献   

19.
Wang M 《Applied optics》2006,45(17):4122-4128
Effects of the ocean surface reflection for solar irradiance on the normalized water-leaving radiance in the visible wavelengths are evaluated and discussed for various conditions of the atmosphere, solar-zenith angles, and wind speeds. The surface reflection effects on water-leaving radiance are simply due to the fact that the radiance that is backscattered out of the water is directly proportional to the downward solar irradiance just beneath the ocean surface. The larger the solar-zenith angle, the less the downward solar irradiance just beneath the ocean surface (i.e., more photons are reflected by the ocean surface), leading to a reduced value of the radiance that is backscattered out of the ocean. For cases of large solar-zenith angles, the effects of surface irradiance reflection need to be accounted for in both the satellite-derived and in situ measured water-leaving radiances.  相似文献   

20.
The polarization correction for the Moderate-Resolution Imaging Spectroradiometer (MODIS) instruments on the Terra and Aqua satellites is described. The focus is on the prelaunch polarization characterization and on the derivation of polarization correction coefficients for the processing of ocean color data. The effect of the polarization correction is demonstrated. The radiances at the top of the atmosphere need to be corrected by as much as 3.2% in the 412 nm band. The effect on the water-leaving radiances can exceed 50%. The polarization correction produces good agreement of the MODIS Aqua water-leaving radiance time series with data from another, independent satellite-based ocean color sensor, the Sea-Viewing Wide Field-of-View Sensor (SeaWiFS).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号