共查询到20条相似文献,搜索用时 0 毫秒
1.
Rural roads carry less than fifty percent of the traffic in the United States. However, more than half of the traffic accident fatalities occurred on rural roads. This research focuses on analyzing injury severities involving single-vehicle crashes on rural roads, utilizing a latent class logit (LCL) model. Similar to multinomial logit (MNL) models, the LCL model has the advantage of not restricting the coefficients of each explanatory variable in different severity functions to be the same, making it possible to identify the impacts of the same explanatory variable on different injury outcomes. In addition, its unique model structure allows the LCL model to better address issues pertinent to the independence from irrelevant alternatives (IIA) property. A MNL model is also included as the benchmark simply because of its popularity in injury severity modeling. The model fitting results of the MNL and LCL models are presented and discussed. Key injury severity impact factors are identified for rural single-vehicle crashes. Also, a comparison of the model fitting, analysis marginal effects, and prediction performance of the MNL and LCL models are conducted, suggesting that the LCL model may be another viable modeling alternative for crash-severity analysis. 相似文献
2.
A retrospective cross-sectional study is conducted analysing 11,771 traffic accidents reported by the police between January 2008 and December 2013 which are classified into three injury severity categories: fatal, injury, and no injury. Based on this classification, a multinomial logit analysis is performed to determine the risk factors affecting the severity of traffic injuries. The estimation results reveal that the following factors increase the probability of fatal injuries: drivers over the age of 65; primary-educated drivers; single-vehicle accidents; accidents occurring on state routes, highways or provincial roads; and the presence of pedestrian crosswalks. The results also indicate that accidents involving cars or private vehicles or those occurring during the evening peak, under clear weather conditions, on local city streets or in the presence of traffic lights decrease the probability of fatal injuries. This study comprises the most comprehensive database ever created for a Turkish sample. This study is also the first attempt to use an unordered response model to determine risk factors influencing the severity of traffic injuries in Turkey. 相似文献
3.
Recent emphasis on bicycling as an alternative to automobile transportation has underscored the need for research efforts directed at bicycle safety when sharing roadways with motorised vehicles. Much of the research attention is focused on junction accidents where motorists tend to infringe upon bicycles’ right of way. Non-junction accidents where a motorist strikes a bicycle while overtaking it, or crashes into the rear of the bicycle, have been less frequently researched. Another common crash type is a door crash that involves a bicycle striking an open door of an automobile. Using British Stats19 accident data, the present study estimates a mixed multinomial model to predict the likelihood of a non-junction crash being of a certain crash type (out of three possible types). The methodological approach adopted allows for the individuals within the observations to have different parameter estimates (as opposed to a single parameter representing all observations). Main findings include that buses/coaches as collision partners were associated with overtaking crashes; and bicycles’ traversing manoeuvres were associated with overtaking and rear-end collisions. Given a crash where a bicycle collides with a motorcycle/taxi, it is more likely a rear-end crash and a door crash, respectively. Implications of the research findings, the concluding remarks, and recommendations for future research are finally provided. 相似文献
4.
Crashes occurring on rural two-lane highways are more likely to result in severe driver incapacitating injuries and fatalities. In this study, mixed logit models are developed to analyze driver injury severities in single-vehicle (SV) and multi-vehicle (MV) crashes on rural two-lane highways in New Mexico from 2010 to 2011. A series of significant contributing factors in terms of driver behavior, weather conditions, environmental characteristics, roadway geometric features and traffic compositions, are identified and their impacts on injury severities are quantified for these two types of crashes, respectively. Elasticity analyses and transferability tests were conducted to better understand the models’ specification and generality. The research findings indicate that there are significant differences in causal attributes determining driver injury severities between SV and MV crashes. For example, more severe driver injuries and fatalities can be observed in MV crashes when motorcycles or trucks are involved. Dark lighting conditions and dusty weather conditions are found to significantly increase MV crash injury severities. However, SV crashes demonstrate different characteristics influencing driver injury severities. For example, the probability of having severe injury outcomes is higher when vans are identified in SV crashes. Drivers’ overtaking actions will significantly increase SV crash injury severities. Although some common attributes, such as alcohol impaired driving, are significant in both SV and MV crash severity models, their effects on different injury outcomes vary substantially. This study provides a better understanding of similarities and differences in significant contributing factors and their impacts on driver injury severities between SV and MV crashes on rural two-lane highways. It is also helpful to develop cost-effective solutions or appropriate injury prevention strategies for rural SV and MV crashes. 相似文献
5.
Insurance claims were examined for evidence of neck injuries to drivers of passenger cars struck in the rear. Neck injury rates were significantly lower for male drivers, elderly drivers, and drivers in less severe crashes. Even after accounting for differences in driver demographics and crash severity, neck injury rates were significantly lower for drivers of cars with head restraints that were more likely to be behind the heads of motorists. 相似文献
6.
Standard multinomial logit (MNL) and mixed logit (MXL) models are developed to estimate the degree of influence that bicyclist, driver, motor vehicle, geometric, environmental, and crash type characteristics have on bicyclist injury severity, classified as property damage only, possible, nonincapacitating or severe (i.e., incapacitating or fatal) injury. This study is based on 10,029 bicycleinvolved crashes that occurred in the State of Ohio from 2002 to 2008. Results of likelihood ratio tests reveal that some of the factors affecting bicyclist injury severity at intersection and non-intersection locations are substantively different and using a common model to jointly estimate impacts on severity at both types of locations may result in biased or inconsistent estimates. Consequently, separate models are developed to independently assess the impacts of various factors on the degree of bicyclist injury severity resulting from crashes at intersection and non-intersection locations.Several covariates are found to have similar impacts on injury severity at both intersection and non-intersection locations. Conversely, six variables were found to significantly influence injury severity at intersection locations but not non-intersection locations while four variables influenced bicyclist injury severity only at non-intersection locations. In crashes occurring at intersection locations, the likelihood of severe bicyclist injury increases by 14.8 percent if the bicyclist is not wearing a helmet, 82.2 percent if the motorist is under the influence of alcohol, 141.3 percent if the crash-involved motor vehicle is a van, 40.6 percent if the motor vehicle strikes the side of the bicycle, and 182.6 percent if the crash occurs on a horizontal curve with a grade. Results from non-intersection locations show the likelihood of severe injuries increases by 374.5 percent if the bicyclist is under the influence of drugs, 150.1 percent if the motorist is under the influence of alcohol, 53.5 percent if the motor vehicle strikes the side of the bicycle and 99.9 percent if the crash-involved motor vehicle is a heavy-duty truck. 相似文献
7.
Traffic crashes occurring on rural roadways induce more severe injuries and fatalities than those in urban areas, especially when there are trucks involved. Truck drivers are found to suffer higher potential of crash injuries compared with other occupational labors. Besides, unobserved heterogeneity in crash data analysis is a critical issue that needs to be carefully addressed. In this study, a hierarchical Bayesian random intercept model decomposing cross-level interaction effects as unobserved heterogeneity is developed to examine the posterior probabilities of truck driver injuries in rural truck-involved crashes. The interaction effects contributing to truck driver injury outcomes are investigated based on two-year rural truck-involved crashes in New Mexico from 2010 to 2011. The analysis results indicate that the cross-level interaction effects play an important role in predicting truck driver injury severities, and the proposed model produces comparable performance with the traditional random intercept model and the mixed logit model even after penalization by high model complexity. It is revealed that factors including road grade, number of vehicles involved in a crash, maximum vehicle damage in a crash, vehicle actions, driver age, seatbelt use, and driver under alcohol or drug influence, as well as a portion of their cross-level interaction effects with other variables are significantly associated with truck driver incapacitating injuries and fatalities. These findings are helpful to understand the respective or joint impacts of these attributes on truck driver injury patterns in rural truck-involved crashes. 相似文献
8.
Given the importance of trucking to the economic well being of a country and the safety concerns posed by the trucks, a study of large-truck crashes is critical. This paper contributes by undertaking an extensive analysis of the empirical factors affecting injury severity of large-truck crashes. Data from a recent, nationally representative sample of large-truck crashes are examined to determine the factors affecting the overall injury severity of these crashes. The explanatory factors include the characteristics of the crash, vehicle(s), and the driver(s). The injury severity was modeled using two measures. Several similarities and some differences were observed across the two models which underscore the need for improved accuracy in the assessment of injury severity of crashes. The estimated models capture the marginal effects of a variety of explanatory factors simultaneously. In particular, the models indicate the impacts of several driver behavior variables on the severity of the crashes, after controlling for a variety of other factors. For example, driver distraction (truck drivers), alcohol use (car drivers), and emotional factors (car drivers) are found to be associated with higher severity crashes. A further interesting finding is the strong statistical significance of several dummy variables that indicate missing data – these reflect how the nature of the crash itself could affect the completeness of the data. Future efforts should seek to collect such data more comprehensively so that the true effects of these aspects on the crash severity can be determined. 相似文献
9.
This study investigates the drivers’ merging behavior and the rear-end crash risk in work zone merging areas during the entire merging implementation period from the time of starting a merging maneuver to that of completing the maneuver. With the merging traffic data from a work zone site in Singapore, a mixed probit model is developed to describe the merging behavior, and two surrogate safety measures including the time to collision (TTC) and deceleration rate to avoid the crash (DRAC) are adopted to compute the rear-end crash risk between the merging vehicle and its neighboring vehicles. Results show that the merging vehicle has a bigger probability of completing a merging maneuver quickly under one of the following situations: (i) the merging vehicle moves relatively fast; (ii) the merging lead vehicle is a heavy vehicle; and (iii) there is a sizable gap in the adjacent through lane. Results indicate that the rear-end crash risk does not monotonically increase as the merging vehicle speed increases. The merging vehicle's rear-end crash risk is also affected by the vehicle type. There is a biggest increment of rear-end crash risk if the merging lead vehicle belongs to a heavy vehicle. Although the reduced remaining distance to work zone could urge the merging vehicle to complete a merging maneuver quickly, it might lead to an increased rear-end crash risk. Interestingly, it is found that the rear-end crash risk could be generally increased over the elapsed time after the merging maneuver being triggered. 相似文献
10.
The severity of injury from vehicle crash is a result of a complex interaction of factors related to drivers’ behavior, vehicle characteristics, road geometric and environmental conditions. Knowing to what extent each factor contributes to the severity of an injury is very important. The objective of the study was to assess factors that contribute to crash injury severity in Ethiopia. Data was collected from June 2012 to July 2013 on one of the main and busiest highway of Ethiopia, which extends from the capital Addis Ababa to Hawassa. During the study period a total of 819 road crashes was recorded and investigated by trained crash detectors. A generalized ordered logit/partial proportional odds model was used to examine factors that might influence the severity of crash injury. Model estimation result suggested that, alcohol use (Coef. = 0.5565; p-value = 0.017), falling asleep while driving (Coef. = 1.3102; p-value = 0.000), driving at night time in the absence of street light (Coef. = 0.3920; p-value = 0.033), rainfall (Coef. = 0.9164; p-value = 0.000) and being a minibus or vans (Coef. = 0.5065; p-value = 0.013) were found to be increased crash injury severity. On the other hand, speeding was identified to have varying coefficients for different injury levels, its highest effects on sever and fatal crashes. In this study risky driving behaviors (speeding, alcohol use and sleep/fatigue) were a powerful predictor of crash injury severity. Therefore, better driver licensing and road safety awareness campaign complimented with strict police enforcement can play a pivotal role to improve road safety. Further effort needed as well to monitor speed control strategies like; using the radar control and physical speed restraint measures (i.e., rumble strips). 相似文献
12.
This paper proposes an econometric structure for injury severity analysis at the level of individual accidents that recognizes the ordinal nature of the categories in which injury severity are recorded, while also allowing flexibility in capturing the effects of explanatory variables on each ordinal category and allowing heterogeneity in the effects of contributing factors due to the moderating influence of unobserved factors. The model developed here, referred to as the mixed generalized ordered response logit (MGORL) model, generalizes the standard ordered response models used in the extant literature for injury severity analysis. To our knowledge, this is the first such formulation to be proposed and applied in the econometric literature in general, and in the safety analysis literature in particular. The MGORL model is applied to examine non-motorist injury severity in accidents in the USA, using the 2004 General Estimates System (GES) database. The empirical findings emphasize the inconsistent results obtained from the standard ordered response model. An important policy result from our analysis is that the general pattern and relative magnitude of elasticity effects of injury severity determinants are similar for pedestrians and bicyclists. The analysis also suggests that the most important variables influencing non-motorist injury severity are the age of the individual (the elderly are more injury-prone), the speed limit on the roadway (higher speed limits lead to higher injury severity levels), location of crashes (those at signalized intersections are less severe than those elsewhere), and time-of-day (darker periods lead to higher injury severity). 相似文献
13.
This study analyzes driver's injury severity in single- and two-vehicle crashes and compares the effects of explanatory variables among various types of crashes. The study identified factors affecting injury severity and their effects on severity levels using 5-year crash records for provincial highways in Ontario, Canada. Considering heteroscedasticity in the effects of explanatory variables on injury severity, the heteroscedastic ordered logit (HOL) models were developed for single- and two-vehicle crashes separately. The results of the models show that there exists heteroscedasticity for young drivers (≤30), safety equipment and ejection in the single-vehicle crash model, and female drivers, safety equipment and head-on collision in the two-vehicle crash models. The results also show that young car drivers have opposite effects between single-car and car–car crashes, and sideswipe crashes have opposite effects between car–car and truck–truck crashes. The study demonstrates that separate HOL models for single-vehicle and different types of two-vehicle crashes can identify differential effects of factors on driver's injury severity. 相似文献
14.
Brand choice models as a rule have a linear (deterministic) utility function, i.e. they conceive utility as linear combination
of predictors like price, sales promotion variables, brand name and other product attributes. To discover nonlinear effects
on brands' utilities in a flexible way we specify deterministic utility by means of a certain type of neural net. This feedforward
multilayer perceptron is able to approximate any continuous multivariate function and its derivatives with the desired level
of precision. In an empirical study the neural net based choice model leads to better out-of-sample results than homogeneous
and heterogeneous versions of linear utility MNL models. On the other hand the latent class variant of the linear utility
MNL model attains better fit values for estimation data than the neural net model. The neural net approach implies different
choice elasticities for most predictors and identifies nonlinear effects (like interaction effects, thresholds, saturation
effects).
Received: November 3, 2000 / Accepted: March 7, 2002 相似文献
15.
This research presents a comprehensive analysis of motor vehicle–bicycle crashes using 4 years of reported crash data (2004–2007) in Beijing. The interrelationship of irregular maneuvers, crash patterns and bicyclist injury severity are investigated by controlling for a variety of risk factors related to bicyclist demographics, roadway geometric design, road environment, etc.Results show that different irregular maneuvers are correlated with a number of risk factors at different roadway locations such as the bicyclist age and gender, weather and traffic condition. Furthermore, angle collisions are the leading pattern of motor vehicle–bicycle crashes, and different irregular maneuvers may lead to some specific crash patterns such as head-on or rear-end crashes. Orthokinetic scrape is more likely to result in running over bicyclists, which may lead to more severe injury. Moreover, bicyclist injury severity level could be elevated by specific crash patterns and risk factors including head-on and angle collisions, occurrence of running over bicyclists, night without streetlight, roads without median/division, higher speed limit, heavy vehicle involvement and older bicyclists.This study suggests installation of median, division between roadway and bikeway, and improvement of illumination on road segments. Reduced speed limit is also recommended at roadway locations with high bicycle traffic volume. Furthermore, it may be necessary to develop safety campaigns aimed at male, teenage and older bicyclists. 相似文献
16.
Most crash severity studies ignored severity correlations between driver-vehicle units involved in the same crashes. Models without accounting for these within-crash correlations will result in biased estimates in the factor effects. This study developed a Bayesian hierarchical binomial logistic model to identify the significant factors affecting the severity level of driver injury and vehicle damage in traffic crashes at signalized intersections. Crash data in Singapore were employed to calibrate the model. Model fitness assessment and comparison using intra-class correlation coefficient (ICC) and deviance information criterion (DIC) ensured the suitability of introducing the crash-level random effects. Crashes occurring in peak time and in good street-lighting condition as well as those involving pedestrian injuries tend to be less severe. But crashes that occur in night time, at T/Y type intersections, and on right-most lane, as well as those that occur in intersections where red light cameras are installed tend to be more severe. Moreover, heavy vehicles have a better resistance on severe crash and thus induce less severe injuries, while crashes involving two-wheel vehicles, young or aged drivers, and the involvement of offending party are more likely to result in severe injuries. 相似文献
17.
In this paper, we aim to identify the different factors that influence injury severity of highway vehicle occupants, in particular drivers, involved in a vehicle-train collision at highway-railway grade crossings. The commonly used approach to modeling vehicle occupant injury severity is the traditional ordered response model that assumes the effect of various exogenous factors on injury severity to be constant across all accidents. The current research effort attempts to address this issue by applying an innovative latent segmentation based ordered logit model to evaluate the effects of various factors on the injury severity of vehicle drivers. In this model, the highway-railway crossings are assigned probabilistically to different segments based on their attributes with a separate injury severity component for each segment. The validity and strength of the formulated collision consequence model is tested using the US Federal Railroad Administration database which includes inventory data of all the railroad crossings in the US and collision data at these highway railway crossings from 1997 to 2006. The model estimation results clearly highlight the existence of risk segmentation within the affected grade crossing population by the presence of active warning devices, presence of permanent structure near the crossing and roadway type. The key factors influencing injury severity include driver age, time of the accident, presence of snow and/or rain, vehicle role in the crash and motorist action prior to the crash. 相似文献
18.
Traffic accident and fatality rates can be utilized as indicators of traffic safety, but cannot reflect the overall status of traffic safety in a country. This paper uses a holistic perspective approach to investigate traffic safety in the United Arab Emirates (UAE). Initially, 12 potential items were selected to investigate the issue of traffic safety in the country. The investigation included data collection and analyses from official police reports, survey among road-users and interview of traffic safety experts. Based on data analysis and interpretation, the main factors affecting traffic safety in the UAE along with their level of deficiency were identified. The study revealed that the main factors contributing to traffic safety in the UAE are driving behaviour, awareness, education and training, infrastructure, vehicle, law enforcement, coordination and quality of resources. Among these factors, a major deficiency was found in the “driving behaviour”, a minor deficiency in “vehicle safety”, and a moderate deficiency in the others. Based on the deficiency level of the factors recommendations were proposed to improve the status of traffic safety in the country. 相似文献
19.
The study proposes a convex combination (CC) algorithm to fast and stably train a neural network (NN) model for crash injury severity prediction, and a modified NN pruning for function approximation (N2PFA) algorithm to optimize the network structure. To demonstrate the proposed approaches and to compare them with the NN trained by traditional back-propagation (BP) algorithm and an ordered logit (OL) model, a two-vehicle crash dataset in 2006 provided by the Florida Department of Highway Safety and Motor Vehicles (DHSMV) was employed. According to the results, the CC algorithm outperforms the BP algorithm both in convergence ability and training speed. Compared with a fully connected NN, the optimized NN contains much less network nodes and achieves comparable classification accuracy. Both of them have better fitting and predicting performance than the OL model, which again demonstrates the NN’s superiority over statistical models for predicting crash injury severity. The pruned input nodes also justify the ability of the structure optimization method for identifying the factors irrelevant to crash-injury outcomes. A sensitivity analysis of the optimized NN is further conducted to determine the explanatory variables’ impact on each injury severity outcome. While most of the results conform to the coefficient estimation in the OL model and previous studies, some variables are found to have non-linear relationships with injury severity, which further verifies the strength of the proposed method. 相似文献
20.
Large naturalistic driving studies give extremely detailed insight into how traffic accidents happen and what causes them. However, even in very large studies there are only relatively few crashes. Hence one additionally selects and studies crash surrogates, so called “near-crashes”, i.e. situations when a crash almost happened. The selection procedures invariably entail severe risks of causing bias. In this paper we use extreme value statistics to develop two methods to study the extent and form of this bias. The methods are applied to a large naturalistic driving study, the 100-car study. Both methods identified a severe discrepancy between the rear-striking near-crashes and the rear-striking crashes. Perhaps surprisingly, one conclusion is that, for rear-striking and in this study, the crashes have little relevance for increasing traffic safety. We believe substantial efforts should be made to develop statistical methods for using near-crashes and crashes in future large naturalistic driving studies (such as the SHRP2 study). 相似文献
|