首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Poly(ether ether ketone) (PEEK) hollow fiber membranes were prepared by a thermally induced phase separation method with polyetherimide as diluent, and N‐methyl pyrrolidone (NMP), dichloromethane and a composite extractant composed of NMP, ethanolamine and water as extractant. The effects of the different solvents induced crystallization on the pore structure during extraction and the properties of the PEEK hollow fiber membranes were investigated in detail. The crystallization behaviors of the membranes were characterized by DSC and XRD. The effect of the extractants on the microscopic morphologies, pore structures, water fluxes and mechanical properties of the membranes were investigated. The results showed that the extraction ability of the composite extractant was the most significant, followed by NMP and dichloromethane. The crystallinity of the hollow fiber was 39.0% before extraction and was elevated to 39.2% after the extraction with NMP, 46.6% with dichloromethane and 46.7% with the composite extractant, which shows that dichloromethane and the composite extractant have strong ability to induce the crystallization of PEEK. The inner and outer surfaces of the membranes obtained after extraction by the composite extractant had the largest pore size and the highest surface porosity. The most probable pore diameter of the membranes obtained after extraction by NMP, dichloromethane and the composite extractant was 23.26 nm, 24.43 nm and 24.43 nm, respectively, which indicated that solvent‐induced crystallization was beneficial for the formation of larger pores. The pure water flux of the PEEK membrane prepared by the composite extractant was the largest, but the tensile strength was the lowest. © 2019 Society of Chemical Industry  相似文献   

2.
The crystallization and melting behavior of poly(ether ether ketone) (PEEK) in blends with poly(aryl ether sulfone) (PES) prepared by melt mixing are investigated by differential scanning calorimetry (DSC) and wide‐angle X‐ray scattering (WAXS). The presence of PES is found to have a notable influence on the crystallization behavior of PEEK, especially when present in low concentrations in the PEEK/PES blends. The PEEK crystallization kinetics is retarded in the presence of PES from the melt and in the rubbery state. An analysis of the melt crystallization exotherm shows a slower rate of nucleation and a wider crystallite size distribution of PEEK in the presence of PES, except at low concentrations of PES, where, because of higher miscibility and the tendency of PES to form ordered structures under suitable conditions, a significantly opposite result is observed. The cold crystallization temperature of the blends at low PES concentration is higher then that of pure PEEK, whereas at a higher PES concentration little change is observed. In addition, the decrease in heat of cold crystallization and melting, which is more prevalent in PEEK‐rich compositions than in pure PEEK, shows the reduction in the degree of crystallinity because of the dilution effect of PES. Isothermal cold crystallization studies show that the cold crystallization from the amorphous glass occurs in two stages, corresponding to the mobilization of the PEEK‐rich and PES‐rich phases. The slower rate of crystallization of the PEEK‐rich phase, even in compositions where a pure PEEK phase is observed, indicates that the presence of the immobile PES‐rich phase has a constraining influence on the crystallization of the PEEK‐rich phase, possibly because of the distribution of individual PEEK chains across the two phases. The various crystallization parameters obtained from WAXS analysis show that the basic crystal structure of PEEK remains unaffected in the blend. Further, the slight melting point depression of PEEK at low concentrations of PES, apart from several other morphological reasons, may be due to some specific interactions between the component homopolymers. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 2906–2918, 2003  相似文献   

3.
综述了聚醚醚酮(PEEK)、聚醚酰亚胺(PEI)、聚四氟乙烯(PTFE)、热致液晶(TLCP)和聚醚砜(PES)等高性能工程塑料的共混改性研究进展,详细探讨了各种PEEK共混物的相容性、结晶行为、微观结构、热行为和力学性能等性能特征。PEEK与PEI在熔融和无定形状态下完全相容,常用于PEEK的结晶行为和微观结构的基础研究;与PTFE、TLCP、PES共混分别是提高PEEK的摩擦磨损性能、加工性能和热稳定性的有效手段。各种共混物的相容性好坏对其结晶行为和微观结构有重要影响,从而影响了共混物的力学性能。在此基础上,对PEEK共混改性领域进一步的研究方向和内容进行了讨论。  相似文献   

4.
The physical form of polymers is often important for carrying out subsequent processing operations. For example, fine powders are desirable for molding and sintering compounds because they consolidate to produce void free components. The objective of this work is to prepare fine polymeric particulates suitable for processing into fiber reinforced polymer matrix composites. Micron size particles of poly(ether ether ketone) (PEEK) were prepared by rapidly quenching solutions of these materials. PEEK pellets were dissolved at temperatures near the PEEK melting point in a mixture of terphenyls and quaterphenyls; then the solution was quenched to a temperature between the Tg and Tm (≈ 225°C) by adding a room temperature eutectic mixture of diphenyl ether and biphenyl. A supersaturated, metastable solution of PEEK resulted, causing rapid nucleation. Fine PEEK particles rapidly crystallized from this solution. The average particle size was measured using transmission electron microscopy, atomic force microscopy, and by light scattering of aqueous suspensions which had been fractionated by centrifugation. The average particle diameter was about 0.6 μm. Three dimensional photomicrographs obtained via atomic force microscopy showed some aggregates in the suspensions. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 63: 1571–1578, 1997  相似文献   

5.
A procedure for obtaining high performance large internal diameter (ID; >1 mm) hollow fiber microfiltration membranes from poly(ether ether ketone) (PEEK) is presented. A simple mixture of isomers of diphenylphthalate is a good solvent for employing the thermal‐phase inversion process to obtain PEEK membranes. Obtaining large ID hollow fibers with substantial transmembrane flux requires sufficient melt strength during spinning to prevent excessive draw of the extruding fiber. The use of a second leachable polymer to the blend satisfies the conditions, and polysulphone (PS) is found to provide superior membranes relative to either poly(etherimide) (PEI) or poly(ether sulphone) (PES) as a second polymer. PEEK membranes obtained by this process yield better chemical resistance to a concentrated warm surfactant/oil solution. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 175–181, 1999  相似文献   

6.
Film membranes from the thermoplastic poly(ether ether ketone) (PEEK) have been extruded and tested for their microfiltration and ultrafiltration performance. High‐performance asymmetric membranes have been obtained by extruding polymer blends of PEEK, polysulphone, and a small molecule solvent mixture, and then by removing the polysulphone and solvent in a subsequent extraction step. The process for making ultrafiltration membranes differs from microfiltration membranes only in the relative blend components, and the temperature of the film pick‐up rolls. Processing parameters with important effects on the membrane performance have been identified. Microfiltration membranes are characterized by their pore‐size distributions and SEM, and ultrafiltration membranes by their rejection of bovine serum albumin, bubble point, and SEM. Composite membrane for nanofiltration utilizing the PEEK ultrafiltration membrane as a substrate performed similarly to a commercial membrane for the same purpose. This work details the best method for making PEEK film membranes published to date. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 1146–1155, 1999  相似文献   

7.
We studied the gas permeation properties of poly(ether ether ketone) (PEEK) and compared it with two other polymers commonly used in the construction of semiconductor microenvironments, polycarbonate (PC), and poly(ether imide) (PEI). The PEEK specimens consisted of extruded films as well as compression‐ and injection‐molded specimens. The compression‐molded specimens were prepared to achieve the highest crystallinity. Injection‐molded disks, representing products, were milled to a prescribed thickness. Permeation, diffusion, and solubility coefficients were measured on these various PEEK specimens for hydrogen, nitrogen, and oxygen gases. It was found that PEEK generally has better permeation resistance than PC or PEI; showing up to five times lower permeation rates than PC or PEI, depending on grade, crystallinity, and gas. The superior permeation resistance of injection‐molded or extruded PEEK, when compared with similarly processed PC or PEI, comes from its crystallinity. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

8.
The thermal properties of blends of poly(ether ether ketone) (PEEK) and poly(ether imide) (PEI) prepared by screw extrusion were investigated by differential scanning calorimetry. From the thermal analysis of amorphous PEEK–PEI blends which were obtained by quenching in liquid nitrogen, a single glass transition temperature (Tg) and negative excess heat capacities of mixing were observed with the blend composition. These results indicate that there is a favorable interaction between the PEEK and PEI in the blends and that there is miscibility between the two components. From the Lu and Weiss equation and a modified equation from this work, the polymer–polymer interaction parameter (χ12) of the amorphous PEEK–PEI blends was calculated and found to range from −0.058 to −0.196 for the extruded blends with the compositions. The χ12 values calculated from this work appear to be lower than the χ12 values calculated from the Lu and Weiss equation. The χ12 values calculated from the Tg method both ways decreased with increase of the PEI weight fraction. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 733–739, 1999  相似文献   

9.
Rosario E.S. Bretas  Donald G. Baird   《Polymer》1992,33(24):5233-5244
This paper is concerned with a novel ternary blend composed of poly(ether imide) (PEI), poly(ether ether ketone) (PEEK) and a liquid crystalline polymer (LCP; HX4000, Du Pont). Different compositions were prepared by extrusion and injection moulding. Dynamic mechanical thermal analysis and the observation of the fracture surfaces, before and after annealing, allowed determination of the cold crystallization temperatures and miscibility behaviour of these systems. PEEK/PEI blends are known from previous studies to be miscible at all compositions. In this case it was observed that the PEEK/HX4000 blend was miscible up to 50 wt% HX4000 but partially miscible above this value. The PEI/HX4000 blends were found to be partially miscible in the whole concentration range. As a result, some ternary blend compositions exhibited only one phase, while others exhibited two phases. The measurement of the tensile properties showed that ternary blends with high modulus can be obtained at high LCP loadings, while compositions with high ultimate tensile strength can be obtained with high loadings of PEI or PEEK.  相似文献   

10.
The phase behavior, crystallization, and morphology of blends based on poly (ether ether ketone) [PEEK] and bisphenol-A polyarylate [PAr] are described. This system is partially miscible in the melt. Upon quenching to an amorphous glass the system displays two glass transitions corresponding to a nearly pure PEEK phase (Tg1) and a PAr-rich mixed phase (Tg2). The presence of the PAr has a strong retarding influence on the rate of crystallization of PEEK in the blends. Cold crystallization from the amorphous glass occurs in two stages with increasing temperature, corresponding to the mobilization of the PEEK-rich and PAr-rich phases, respectively. At lower cold-crystallization temperatures (below Tg2), the immobile PAr-rich phase constrains crystallization of the PEEK-rich phase, as manifested in both a decreased rate of crystallization and decreased bulk crystallinity. Dynamic relaxation studies of the crystallized blends reveal two glass-rubber relaxations originating from interlamellar amorphous populations in the PEEK-rich and PAr-rich phases. In the PAr-rich phase, there is no evidence of large-scale PAr exclusion to interfibrillar or interspherulitic regions.  相似文献   

11.
Crystallinity and mechanical properties of blends with different amounts of semicrystalline poly(aryl/ ether ether ketone) (PEEK) and amorphous poly(ether imide) (PEI) polymers have been studied. The blends, prepared by melt mixing, have been investigated by differential scanning calorimeter (DSC) to analyze the miscibility between the components and the final crystalline content. Moreover, for the 20/80 PEEK/PEI blend, crystallization in dynamic and isothermal conditions has been carefully investigated in order to find proper conditions for maximum development of crystallinity. Mechanical tests (static and dynamic) have been performed to evaluate the properties of the as-molded and crystallized blends and to compare them with those of crystalline PEEK and amorphous PEI neat resins. Finally, a few SEM observations have been performed to compare the fractured surface of the blend with those of the pure constituents.  相似文献   

12.
Growths of poly(ether ether ketone) (PEEK) spherulites from both pure melt and its miscible blends with poly(ether imide) (PEI) have been studied by polarized optical microscopy. The nucleation density of PEEK spherulites was depressed upon blending with PEI, which can be attributed to the reduction in degree of supercooling arising from equilibrium melting point depression. A modified Lauritzen-Hoffman (L-H) theory was adopted to analyze the growth kinetics. Regime III-II transition was observed with the transition temperature decreasing with increasing PEI composition. Assuming free rotations of the virtual bonds in PEEK molecule, the side surface free energy of 12.0 erg/cm2 was calculated from the characteristic ratio. The fold surface free energy of 188 erg/cm2 and work of chain folding of 12.3 kcal/mol were then obtained from the modified L-H analysis.  相似文献   

13.
The miscibility and crystallization behavior of poly(ether ether ketone ketone) (PEEKK)/poly(ether imide) (PEI) blends prepared by melt‐mixing were investigated by differential scanning calorimetry. The blends showed a single glass transition temperature, which increased with increasing PEI content, indicating that PEEKK and PEI are completely miscible in the amorphous phase over the studied composition range (weight ratio: 90/10–60/40). The cold crystallization of PEEKK blended with PEI was retarded by the presence of PEI, as is apparent from the increase of the cold crystallization temperature and decrease of the normalized crystallinity for the samples anealed at 300°C with increasing PEI content. Although the depression of the apparent melting temperature of PEEKK blended with PEI was observed, there was no evidence of depression in the equilibrium melting temperature. The analysis of the isothermal crystallization at 313–321°C from the melt of PEEKK/PEI (100/0, 90/10, and 80/20) blends suggested that the retardation of crystallization of PEEKK is caused by the increase of the crystal surface free energy in addition to the decrease of the mobility by blending PEI with a high glass transition temperature. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 769–775, 2001  相似文献   

14.
The morphology of nonisothermally crystallized poly(phenylene sulfide) (PPS) and its blend with poly (ether ether ketone) (PEEK) have been observed by polarized optical microscope (POM) equipped with a hot stage. The nonisothermal crystallization behavior of PPS and PEEK/PPS blend has also been investigated by differential scanning calorimetry (DSC). The maximum crystallization temperature for PEEK/PPS blend is about 15°C higher than that of neat PPS, and the crystallization rate, characterized by half crystallization time, of the PEEK/PPS blend is also higher than that of the neat PPS. These results indicate that the PEEK acts as an effective nucleation agent and greatly accelerates the crystallization rate of PPS. The Ozawa model was used to analyze the nonisothermal crystallization kinetics of PPS and its blends. The Avrami exponent values of neat PPS are higher than that of its blend, which shows that the presence of PEEK changed the nucleation type of PPS from homogeneous nucleation to heterogeneous nucleation. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

15.
The lamellar morphology of a melt‐miscible blend consisting of poly(trimethylene terephthalate) (PTT) and poly(ether imide) (PEI) prepared by solution precipitation has been investigated by means of optical polarized microscopy (POM) and small angle X‐ray scattering (SAXS). From the observation under POM, it was suggested that PEI was predominantly segregated into the interlamellar and/or interfibrillar regions upon PTT crystallization since the PTT spherulitic morphologies of blends were volume‐filling. From results of SAXS data analysis, a larger amorphous layer thickness was identified in the blends, showing that some PEI was incorporated inside the interlamellar regions after crystallization. Despite the swelling of the amorphous layer, the amorphous layer thickness was relatively independent of the blend composition. It was concluded that amorphous PEI was located in the interlamellar regions of PTT as the weight fraction of PEI (wPEI) [≤] 0.1, while amorphous PEI was predominantly segregated into the interfibrillar regions of PTT as wPEI > 0.1, and the extent of interfibrillar segregation increased with increasing wPEI. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci, 2006  相似文献   

16.
The isothermal crystallization behavior of nano-alumina particle-filled poly(ether ether ketone) (PEEK) composites has been investigated using differential scanning calorimeter. The results show that all the neat PEEK and nano-alumina-filled PEEK composites exhibit the double-melting behavior under isothermal crystallization. The peak crystallization times (τp) for all the neat PEEK and PEEK/aluminum oxide (Al2O3) composites increase with increasing crystallization temperature. Moreover, the crystallinity of the PEEK/Al2O3 composite with 7.5 wt % nano-filler content reached the maximum value of 44.8% at 290°C, higher than that of the neat PEEK polymer. From the lower value in τp and higher value in Xc for the PEEK/Al2O3 composites, the inclusion of the nano-alumina into the PEEK matrix favored the occurrence of heterogeneous nucleation. The Avrami exponents n of all the neat PEEK and PEEK/Al2O3 composites ranged from 2 to 3, and the n values for PEEK/Al2O3 composites were slightly higher than that of the neat PEEK polymer, indicating that the inclusion of the nano-filler made the crystallization mechanism more complex. However, the growth rate of crystallization was lowered as the nano- filler was introduced, and the decrease in growth rate reduced the grain size of the PEEK spherulites because of the lowering of molecule mobility during isothermal crystallization. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

17.
Microporous chlorinated polyvinyl chloride (CPVC) membranes were prepared via thermally induced phase separation process for the first time using diphenyl ether (DPE) as diluent. The CPVC/DPE blends exhibit upper critical solution temperature (UCST)‐type phase behavior, which undergoes liquid‐liquid phase separation followed by sol‐gel transition during cooling process. Therefore, the resulting CPVC membranes presented symmetric morphology with uniformly distributed cellular pores. The cloud point (liquid‐liquid phase separation temperature) decreased with increasing CPVC content, while the sol‐gel transition temperature showed an opposite trend. Both the growth rate of diluent‐rich phase droplets and the gelation rate of the CPVC/DPE blends increased by decreasing CPVC concentration or cooling rate, leading to an increase of the pore size in the final membranes. Results of water permeation tests confirmed that the water flux of the membranes have a significant dependence on their porosity and pore size, that is the water flux increased with the increase of porosity and pore size. Moreover, the CPVC microporous membranes prepared by the TIPS process showed a high mechanical strength and excellent acid/alkali resistance, which has presented a great potential for application in the fields of water and wastewater treatment. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44346.  相似文献   

18.
Results on solution-blended poly(ether ether ketone) (PEEK) and poly(ether imide) (PEI) blends are reported. Dichloroacetic acid was used as the cosolvent for blending. PEEK and PEI are confirmed to be miscible in the melt. The glass transition, Tg, behavior obeys the simple Fox equation or the Gordon-Taylor equation with the adjustable coefficient k = 0.86. This agrees with prior data on melt-blended PEEK/PEI blends. The Tg width of the amorphous PEEK/PEI blends was found to be broader than that of the pure components. The maximum broadening is about 10°C. The specific volume of the amorphous PEEK/PEI blends shows a slight negative deviation from linearity, indicating favorable interaction between PEEK and PEI. The spherulitic growth and resultant blend morphology at 270°C were studied by a cross-polarized optical microscope. The radial growth rate of PEEK spherulites formed from the miscible melt at 270°C decreases from 3.04 μm/min for PEEK/PEI 90/10 blend to 0.77 μm/min for PEEK/PEI 70/30 blend. The decrease in crystalization rate of PEEK from PEEK/PEI blends is attributable to the increase in blend Tg. A linear growth was observed for PEEK spherulites formed from miscible melt at 270°C in the early growth stage. The spherulitic growth deviated from linearity in the late stage of growth. PEEK spherulites formed from the miscible PEEK/PEI melt at 270°C are essentially volume-filling. The branches of the spherulites become more clear for PEEK spherulites formed from the blend than that formed from pure PEEK melt.  相似文献   

19.
用模压法制备了聚苯酯(Ekonol)/聚醚醚酮(PEEK)复合材料,通过X射线衍射(XRD)、差示扫描量热分析(DSC)考察了PEEK的结晶行为,并测定了复合材料的熔点、结晶温度和玻璃化转变温度。结果表明:Ekonol含量的大小对PEEK的结晶行为产生了直接影响,PEEK的相对结晶度随着Ekonol含量的增加而提高;Ekonol含量小于30%时,对复合材料的熔点、结晶温度和玻璃化转变温度影响不大,但含量大于30%时,材料的结晶温度、熔融温度下降,玻璃化转变温度提高。  相似文献   

20.
A series of modified poly(ether ether ketone) (PEEK) polymers were synthesized by introduction of addition ether groups from dihydroxydiphenyl ether (DHDE) into the PEEK structure. The inherent viscosity of the DHDE-modified PEEK increased with reaction time at 320 °C. DSC thermograms showed the melting points of the obtained PEEK decreased with the increase of the DHDE content in the backbone. The degradation temperature (Td) was slightly decreased by the introduction of DHDE. The crystallinity as measured via the X-ray diffraction (XRD) increases with the introduction of DHDE into the modified PEEK. The crystalline structure was identified as an orthorhombic structure with lattice constants a = 7.72 Å, b = 5.86 Å, and c = 10.24 Å. Due to the glass transition temperature (Tg) and the melting temperature (Tm) decreasing with the increase of the DHDE content in the reaction system. the processability of the resultant PEEK could be improved through this DHDE modification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号