首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Focal adhesion kinase (FAK) is a tyrosine kinase that functions as a key orchestrator of signals leading to invasion and metastasis. In the current study, the multicomplex-based pharmacophore (MCBP)-guided method has been suggested to generate a comprehensive pharmacophore of FAK kinase based on seven crystal structures of FAK-inhibitor complexes. In this investigation, a hybrid protocol of virtual screening methods, comprising of pharmacophore model-based virtual screening (PB-VS) and docking-based virtual screening (DB-VS), is used for retrieving new FAK inhibitors from commercially available chemical databases. This hybrid virtual screening approach was then applied to screen several chemical databases, including the Specs (202,408 compounds) database. Thirty-five compounds were selected from the final hits and should be shifted to experimental studies. These results may provide important information for further research of novel FAK inhibitors.  相似文献   

2.
Methione tRNA synthetase (MetRS) is an essential enzyme involved in protein biosynthesis in all living organisms and is a potential antibacterial target. In the current study, the structure-based pharmacophore (SBP)-guided method has been suggested to generate a comprehensive pharmacophore of MetRS based on fourteen crystal structures of MetRS-inhibitor complexes. In this investigation, a hybrid protocol of a virtual screening method, comprised of pharmacophore model-based virtual screening (PBVS), rigid and flexible docking-based virtual screenings (DBVS), is used for retrieving new MetRS inhibitors from commercially available chemical databases. This hybrid virtual screening approach was then applied to screen the Specs (202,408 compounds) database, a structurally diverse chemical database. Fifteen hit compounds were selected from the final hits and shifted to experimental studies. These results may provide important information for further research of novel MetRS inhibitors as antibacterial agents.  相似文献   

3.
The fibroblast growth factor/fibroblast growth factor receptor (FGF/FGFR) signaling pathway plays crucial roles in cell proliferation, angiogenesis, migration, and survival. Aberration in FGFRs correlates with several malignancies and disorders. FGFRs have proved to be attractive targets for therapeutic intervention in cancer, and it is of high interest to find FGFR inhibitors with novel scaffolds. In this study, a combinatorial three-dimensional quantitative structure-activity relationship (3D-QSAR) model was developed based on previously reported FGFR1 inhibitors with diverse structural skeletons. This model was evaluated for its prediction performance on a diverse test set containing 232 FGFR inhibitors, and it yielded a SD value of 0.75 pIC50 units from measured inhibition affinities and a Pearson’s correlation coefficient R2 of 0.53. This result suggests that the combinatorial 3D-QSAR model could be used to search for new FGFR1 hit structures and predict their potential activity. To further evaluate the performance of the model, a decoy set validation was used to measure the efficiency of the model by calculating EF (enrichment factor). Based on the combinatorial pharmacophore model, a virtual screening against SPECS database was performed. Nineteen novel active compounds were successfully identified, which provide new chemical starting points for further structural optimization of FGFR1 inhibitors.  相似文献   

4.
Neuronal nitric oxide synthase (nNOS) plays an important role in neurotransmission and smooth muscle relaxation. Selective inhibition of nNOS over its other isozymes is highly desirable for the treatment of neurodegenerative diseases to avoid undesirable effects. In this study, we present a workflow for the identification and prioritization of compounds as potentially selective human nNOS inhibitors. Three-dimensional pharmacophore models were constructed based on a set of known nNOS inhibitors. The pharmacophore models were evaluated by Pareto surface and CoMFA (Comparative Molecular Field Analysis) analyses. The best pharmacophore model, which included 7 pharmacophore features, was used as a search query in the SPECS database (SPECS®, Delft, The Netherlands). The hit compounds were further filtered by scoring and docking. Ten hits were identified as potential selective nNOS inhibitors.  相似文献   

5.
Homoserine dehydrogenase (HSD) from Mycobacterium leprae TN is an antifungal target for antifungal properties including efficacy against the human pathogen. The 3D structure of HSD has been firmly established by homology modeling methods. Using the template, homoserine dehydrogenase from Thiobacillus denitrificans (PDB Id 3MTJ), a sequence identity of 40% was found and molecular dynamics simulation was used to optimize a reliable structure. The substrate and co-factor-binding regions in HSD were identified. In order to determine the important residues of the substrate (l-aspartate semialdehyde (l-ASA)) binding, the ASA was docked to the protein; Thr163, Asp198, and Glu192 may be important because they form a hydrogen bond with HSD through AutoDock 4.2 software. After use of a virtual screening technique of HSD, the four top-scoring docking hits all seemed to cation–π ion pair with the key recognition residue Lys107, and Lys207. These ligands therefore seemed to be new chemotypes for HSD. Our results may be helpful for further experimental investigations.  相似文献   

6.
Botulinum toxins are neurotoxins produced by Clostridium botulinum. This toxin can be lethal for humans as a cause of botulism; however, in small doses, the same toxin is used to treat different conditions. Even if the therapeutic doses are effective and safe, the adverse reactions could be local and could unmask a subclinical impairment of neuromuscular transmissions. There are not many cases of adverse events in the literature; however, it is possible that sometimes they do not occur as they are transient and, if they do occur, there is no possibility of a cure other than to wait for the pharmacological effect to end. Inhibition of botulinum neurotoxin type A (BoNT/A) effects is a strategy for treating botulism as it can provide an effective post-exposure remedy. In this paper, 13,592,287 compounds were screened through a pharmacophore filter, a 3D-QSAR model, and a virtual screening; then, the compounds with the best affinity were selected. Molecular dynamics simulation studies on the first four compounds predicted to be the most active were conducted to verify that the poses foreseen by the docking were stable. This approach allowed us to identify compounds with a calculated inhibitory activity in the range of 316–500 nM.  相似文献   

7.
Dysregulated epidermal growth factor receptor (EGFR) expression is frequently observed in non-small cell lung cancer (NSCLC) growth and metastasis. Despite recent successes in the development of tyrosine kinase inhibitors (TKIs), inevitable resistance to TKIs has led to urgent calls for novel EGFR inhibitors. Herein, we report a rational workflow used to identify novel EGFR-TKIs by combining hybrid ligand- and structure-based pharmacophore models. Three types of models were developed in this workflow, including 3D QSAR-, common feature-, and structure-based EGFR-TK domain-containing pharmacophores. A National Cancer Institute (NCI) compound dataset was adopted for multiple-stage pharmacophore-based virtual screening (PBVS) of various pharmacophore models. The six top-scoring compounds were identified through the PBVS pipeline coupled with molecular docking. Among these compounds, NSC609077 exerted a significant inhibitory effect on EGFR activity in gefitinib-resistant H1975 cells, as determined by an enzyme-linked immunosorbent assay (ELISA). Further investigations showed that NSC609077 inhibited the anchorage-dependent growth and migration of lung cancer cells. Furthermore, NSC609077 exerted a suppressive effect on the EGFR/PI3K/AKT pathway in H1975 cells. In conclusion, these findings suggest that hybrid virtual screening may accelerate the development of targeted drugs for lung cancer treatment.  相似文献   

8.
Akt acts as a pivotal regulator in the PI3K/Akt signaling pathway and represents a potential drug target for cancer therapy. To search for new inhibitors of Akt kinase, we performed a structure-based virtual screening using the DOCK 4.0 program and the X-ray crystal structure of human Akt kinase. From the virtual screening, 48 compounds were selected and subjected to the Akt kinase inhibition assay. Twenty-six of the test compounds showed more potent inhibitory effects on Akt kinase than the reference compound, H-89. These 26 compounds were further evaluated for their cytotoxicity against HCT-116 human colon cancer cells and HEK-293 normal human embryonic kidney cells. Twelve compounds were found to display more potent or comparable cytotoxic activity compared to compound H-89 against HCT-116 colon cancer cells. The best results were obtained with Compounds a46 and a48 having IC50 values (for HCT-116) of 11.1 and 9.5 µM, respectively, and selectivity indices (IC50 for HEK-293/IC50 for HCT-116) of 12.5 and 16.1, respectively. Through structure-based virtual screening and biological evaluations, we have successfully identified several new Akt inhibitors that displayed cytotoxic activity against HCT-116 human colon cancer cells. Especially, Compounds a46 and a48 may serve as useful lead compounds for further development of new anticancer agents.  相似文献   

9.
Thanks to recent guidelines, the design of safe and effective covalent drugs has gained significant interest. Other than targeting non-conserved nucleophilic residues, optimizing the noncovalent binding framework is important to improve potency and selectivity of covalent binders toward the desired target. Significant efforts have been made in extending the computational toolkits to include a covalent mechanism of protein targeting, like in the development of covalent docking methods for binding mode prediction. To highlight the value of the noncovalent complex in the covalent binding process, here we describe a new protocol using tethered and constrained docking in combination with Dynamic Undocking (DUck) as a tool to privilege strong protein binders for the identification of novel covalent inhibitors. At the end of the protocol, dedicated covalent docking methods were used to rank and select the virtual hits based on the predicted binding mode. By validating the method on JAK3 and KRas, we demonstrate how this fast iterative protocol can be applied to explore a wide chemical space and identify potent targeted covalent inhibitors.  相似文献   

10.
Noroviruses are non-enveloped viruses with a positive-sense single-stranded RNA (ssRNA) genome belonging to the genus Norovirus, from the family Caliciviridae, which are accountable for acute gastroenteritis in humans. The Norovirus genus is subdivided into seven genogroups, i.e., (GI-GVII); among these, the genogroup II and genotype 4 (GII.4) strains caused global outbreaks of human norovirus (HuNov) disease. The viral genome comprises three open reading frames (ORFs). ORF1 encodes the nonstructural polyprotein that is cleaved into six nonstructural proteins, which include 3C-like cysteine protease (3CLpro) and a viral RNA-dependent RNA polymerase. ORF2 and ORF3 encode the proteins VP1 and VP2. The RNA-dependent RNA polymerase (RdRp) from noroviruses is one of the multipurpose enzymes of RNA viruses vital for replicating and transcribing the viral genome, making the virally encoded enzyme one of the critical targets for the development of novel anti-norovirus agents. In the quest for a new antiviral agent that could combat HuNov, high throughput virtual screening (HTVS), combined with e-pharmacophore screening, was applied to screen compounds from the PubChem database. CMX521 molecule was selected as a prototype for a similarity search in the PubChem online database. Molecular dynamics simulations were employed to identify different compounds that may inhibit HuNov. The results predicted that compound CID-57930781 and CID-44396095 formed stable complexes with MNV-RdRp within 50 ns; hence, they may signify as promising human norovirus inhibitors.  相似文献   

11.
In an effort to discover potent anticancer agents, 2-thiouracil-5-sulfonamides derivatives were designed and synthesized. The cytotoxic activity of all synthesized compounds was investigated against four human cancer cell lines viz A-2780 (ovarian), HT-29 (colon), MCF-7 (breast), and HepG2 (liver). Compounds 6b,d–g, and 7b showed promising anticancer activity and significant inhibition of CDK2A. Moreover, they were all safe when tested on WI38 normal cells with high selectivity index for cancer cells. Flow cytometric analysis for the most active compound 6e displayed induction of cell growth arrest at G1/S phase (A-2780 cells), S phase (HT-29 and MCF-7 cells), and G2/M phase (HepG2 cells) and stimulated the apoptotic death of all cancer cells. Moreover, 6e was able to cause cycle arrest indirectly through enhanced expression of cell cycle inhibitors p21 and p27. Finally, molecular docking of compound 6e endorsed its proper binding to CDK2A, which clarifies its potent anticancer activity.  相似文献   

12.
B-Raf kinase is an important target in treatment of cancers. In order to design and find potent B-Raf inhibitors (BRIs), 3D pharmacophore models were created using the Genetic Algorithm with Linear Assignment of Hypermolecular Alignment of Database (GALAHAD). The best pharmacophore model obtained which was used in effective alignment of the data set contains two acceptor atoms, three donor atoms and three hydrophobes. In succession, comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were performed on 39 imidazopyridine BRIs to build three dimensional quantitative structure-activity relationship (3D QSAR) models based on both pharmacophore and docking alignments. The CoMSIA model based on the pharmacophore alignment shows the best result (q2 = 0.621, r2pred = 0.885). This 3D QSAR approach provides significant insights that are useful for designing potent BRIs. In addition, the obtained best pharmacophore model was used for virtual screening against the NCI2000 database. The hit compounds were further filtered with molecular docking, and their biological activities were predicted using the CoMSIA model, and three potential BRIs with new skeletons were obtained.  相似文献   

13.
Trypanosoma cruzi (T. cruzi) is a parasite that affects humans and other mammals. T. cruzi depends on glycolysis as a source of adenosine triphosphate (ATP) supply, and triosephosphate isomerase (TIM) plays a key role in this metabolic pathway. This enzyme is an attractive target for the design of new trypanocidal drugs. In this study, a ligand-based virtual screening (LBVS) from the ZINC15 database using benzimidazole as a scaffold was accomplished. Later, a molecular docking on the interface of T. cruzi TIM (TcTIM) was performed and the compounds were grouped by interaction profiles. Subsequently, a selection of compounds was made based on cost and availability for in vitro evaluation against blood trypomastigotes. Finally, the compounds were analyzed by molecular dynamics simulation, and physicochemical and pharmacokinetic properties were determined using SwissADME software. A total of 1604 molecules were obtained as potential TcTIM inhibitors. BP2 and BP5 showed trypanocidal activity with half-maximal lytic concentration (LC50) values of 155.86 and 226.30 µM, respectively. Molecular docking and molecular dynamics simulation analyzes showed a favorable docking score of BP5 compound on TcTIM. Additionally, BP5 showed a low docking score (−5.9 Kcal/mol) on human TIM compared to the control ligand (−7.2 Kcal/mol). Both compounds BP2 and BP5 showed good physicochemical and pharmacokinetic properties as new anti-T. cruzi agents.  相似文献   

14.
The CDK4/6 inhibitors (CDKi) palbociclib, ribociclib, and abemaciclib are currently approved in combination with anti-estrogen therapy for the treatment of advanced and/or metastatic hormone receptor-positive/HER2-neu-negative breast cancer patients. Given the high incidence of bone metastases in this population, we investigated and compared the potential effects of palbociclib, ribociclib, and abemaciclib on the breast cancer bone microenvironment. Primary osteoclasts (OCs) and osteoblasts (OBs) were obtained from human monocyte and mesenchymal stem cells, respectively. OC function was evaluated by tartrate-resistant acid phosphatase assay and real-time PCR; OB activity was assessed by an alizarin red assay. OB/breast cancer co-culture models were generated via the seeding of MCF-7 cells on a layer of OBs, and tumor cell proliferation was analyzed using flow cytometry. Here, we showed that ribociclib, palbociclib, and abemaciclib exerted similar inhibitory effects on the OC differentiation and expression of bone resorption markers without affecting OC viability. On the other hand, the three CDKi did not affect the ability of OB to produce bone matrix, even if the higher doses of palbociclib and abemaciclib reduced the OB viability. In OB/MCF-7 co-culture models, palbociclib demonstrated a lower anti-tumor effect than ribociclib and abemaciclib. Overall, our results revealed the direct effects of CDKi on the tumor bone microenvironment, highlighting differences potentially relevant for clinical practice.  相似文献   

15.
Bacterial resistance is responsible for a wide variety of health problems, both in children and adults. The persistence of symptoms and infections are mainly treated with β-lactam antibiotics. The increasing resistance to those antibiotics by bacterial pathogens generated the emergence of extended-spectrum β-lactamases (ESBLs), an actual public health problem. This is due to rapid mutations of bacteria when exposed to antibiotics. In this case, β-lactamases are enzymes used by bacteria to hydrolyze the beta-lactam rings present in the antibiotics. Therefore, it was necessary to explore novel molecules as potential β-lactamases inhibitors to find antibacterial compounds against infection caused by ESBLs. A computational methodology based on molecular docking and molecular dynamic simulations was used to find new microalgae metabolites inhibitors of β-lactamase. Six 3D β-lactamase proteins were selected, and the molecular docking revealed that the metabolites belonging to the same structural families, such as phenylacridine (4-Ph), quercetin (Qn), and cryptophycin (Cryp), exhibit a better binding score and binding energy than commercial clinical medicine β-lactamase inhibitors, such as clavulanic acid, sulbactam, and tazobactam. These results indicate that 4-Ph, Qn, and Cryp molecules, homologous from microalgae metabolites, could be used, likely as novel β-lactamase inhibitors or as structural templates for new in-silico pharmaceutical designs, with the possibility of combatting β-lactam resistance  相似文献   

16.
Structure-based virtual screening (SBVS), also known as molecular docking, has been increasingly applied to discover small-molecule ligands based on the protein structures in the early stage of drug discovery. In this review, we comprehensively surveyed the prospective applications of molecular docking judged by solid experimental validations in the literature over the past fifteen years. Herein, we systematically analyzed the novelty of the targets and the docking hits, practical protocols of docking screening, and the following experimental validations. Among the 419 case studies we reviewed, most virtual screenings were carried out on widely studied targets, and only 22% were on less-explored new targets. Regarding docking software, GLIDE is the most popular one used in molecular docking, while the DOCK 3 series showed a strong capacity for large-scale virtual screening. Besides, the majority of identified hits are promising in structural novelty and one-quarter of the hits showed better potency than 1 μM, indicating that the primary advantage of SBVS is to discover new chemotypes rather than highly potent compounds. Furthermore, in most studies, only in vitro bioassays were carried out to validate the docking hits, which might limit the further characterization and development of the identified active compounds. Finally, several successful stories of SBVS with extensive experimental validations have been highlighted, which provide unique insights into future SBVS drug discovery campaigns.  相似文献   

17.
18.
19.
Infectious diseases caused by intestinal protozoan, such as Entamoeba histolytica (E. histolytica) and Giardia lamblia (G. lamblia) are a worldwide public health issue. They affect more than 70 million people every year. They colonize intestines causing primarily diarrhea; nevertheless, these infections can lead to more serious complications. The treatment of choice, metronidazole, is in doubt due to adverse effects and resistance. Therefore, there is a need for new compounds against these parasites. In this work, a structure-based virtual screening of FDA-approved drugs was performed to identify compounds with antiprotozoal activity. The glycolytic enzyme triosephosphate isomerase, present in both E. histolytica and G. lamblia, was used as the drug target. The compounds with the best average docking score on both structures were selected for the in vitro evaluation. Three compounds, chlorhexidine, tolcapone, and imatinib, were capable of inhibit growth on G. lamblia trophozoites (0.05–4.935 μg/mL), while folic acid showed activity against E. histolytica (0.186 μg/mL) and G. lamblia (5.342 μg/mL).  相似文献   

20.
In this contribution, four new compounds synthesized from 4-hydroxycoumarin and tyramine/octopamine/norepinephrine/3-methoxytyramine are characterized spectroscopically (IR and NMR), chromatographically (UHPLC-DAD), and structurally at the B3LYP/6-311++G*(d,p) level of theory. The crystal structure of the 4-hydroxycoumarin-octopamine derivative was solved and used as a starting geometry for structural optimization. Along with the previously obtained 4-hydroxycoumarin-dopamine derivative, the intramolecular interactions governing the stability of these compounds were quantified by NBO and QTAIM analyses. Condensed Fukui functions and the HOMO-LUMO gap were calculated and correlated with the number and position of OH groups in the structures. In vitro cytotoxicity experiments were performed to elucidate the possible antitumor activity of the tested substances. For this purpose, four cell lines were selected, namely human colon cancer (HCT-116), human adenocarcinoma (HeLa), human breast cancer (MDA-MB-231), and healthy human lung fibroblast (MRC-5) lines. A significant selectivity towards colorectal carcinoma cells was observed. Molecular docking and molecular dynamics studies with carbonic anhydrase, a prognostic factor in several cancers, complemented the experimental results. The calculated MD binding energies coincided well with the experimental activity, and indicated 4-hydroxycoumarin-dopamine and 4-hydroxycoumarin-3-methoxytyramine as the most active compounds. The ecotoxicology assessment proved that the obtained compounds have a low impact on the daphnia, fish, and green algae population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号