首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In an effort to discover potent anticancer agents, 2-thiouracil-5-sulfonamides derivatives were designed and synthesized. The cytotoxic activity of all synthesized compounds was investigated against four human cancer cell lines viz A-2780 (ovarian), HT-29 (colon), MCF-7 (breast), and HepG2 (liver). Compounds 6b,d–g, and 7b showed promising anticancer activity and significant inhibition of CDK2A. Moreover, they were all safe when tested on WI38 normal cells with high selectivity index for cancer cells. Flow cytometric analysis for the most active compound 6e displayed induction of cell growth arrest at G1/S phase (A-2780 cells), S phase (HT-29 and MCF-7 cells), and G2/M phase (HepG2 cells) and stimulated the apoptotic death of all cancer cells. Moreover, 6e was able to cause cycle arrest indirectly through enhanced expression of cell cycle inhibitors p21 and p27. Finally, molecular docking of compound 6e endorsed its proper binding to CDK2A, which clarifies its potent anticancer activity.  相似文献   

2.
For decades, carbonic anhydrase (CA) inhibitors, most notably the acetazolamide-bearing 1,3,4-thiadiazole moiety, have been exploited at high altitudes to alleviate acute mountain sickness, a syndrome of symptomatic sensitivity to the altitude characterized by nausea, lethargy, headache, anorexia, and inadequate sleep. Therefore, inhibition of CA may be a promising therapeutic strategy for high-altitude disorders. In this study, co-crystallized inhibitors with 1,3,4-thiadiazole, 1,3-benzothiazole, and 1,2,5-oxadiazole scaffolds were employed for pharmacophore-based virtual screening of the ZINC database, followed by molecular docking and molecular dynamics simulation studies against CA to find possible ligands that may emerge as promising inhibitors. Compared to the co-crystal ligands of PDB-1YDB, 6BCC, and 6IC2, ZINC12336992, ZINC24751284, and ZINC58324738 had the highest docking scores of −9.0, −9.0, and −8.9 kcal/mol, respectively. A molecular dynamics (MD) simulation analysis of 100 ns was conducted to verify the interactions of the top-scoring molecules with CA. The system’s backbone revealed minor fluctuations, indicating that the CA–ligand complex was stable during the simulation period. Simulated trajectories were used for the MM-GBSA analysis, showing free binding energies of −16.00 ± 0.19, −21.04 ± 0.17, and −19.70 ± 0.18 kcal/mol, respectively. In addition, study of the frontier molecular orbitals of these compounds by DFT-based optimization at the level of B3LYP and the 6-311G(d,p) basis set showed negative values of the HOMO and LUMO, indicating that the ligands are energetically stable, which is essential for forming a stable ligand–protein complex. These molecules may prove to be a promising therapy for high-altitude disorders, necessitating further investigations.  相似文献   

3.
In recent years, three PARP inhibitors and three CDK4/6 inhibitors have been approved by the FDA for the treatment of recurrent ovarian cancer and advanced ER-positive breast cancer, respectively. However, the clinical benefits of the PARPi or CDK4/6i monotherapy are not as satisfied as expected and benefit only a fraction of patients. Current studies have shown therapeutic synergy for combinations of PARPi and CDK4/6i in breast and ovarian cancers with homologous recombination (HR) proficiency, which represents a new synthetic lethal strategy for treatment of these cancers regardless HR status. Thus, any compounds or strategies that can combine PARP and CDK4/6 inhibition will likely have great potential in improving clinic outcomes and in benefiting more patients. In this study, we developed a novel compound, ZC-22, that effectively inhibited both PARP and CDK4/6. This dual-targeting compound significantly inhibited breast and ovarian cancer cells by inducing cell cycle arrest and severe DNA damage both in vitro and in vivo. Interestingly, the efficacy of ZC-22 is even higher than the combination of PARPi Olaparib and CDK4/6i Abemaciclib in most breast and ovarian cancer cells, suggesting that it may be an effective alternative for the PARPi and CDK4/6i combination therapy. Moreover, ZC-22 sensitized breast and ovarian cancer cells to cisplatin treatment, a widely used chemotherapeutic agent. Altogether, our study has demonstrated the potency of a novel CDK4/6 and PARP dual inhibitor, which can potentially be developed into a monotherapy or combinatorial therapy with cisplatin for breast and ovarian cancer patients with HR proficiency.  相似文献   

4.
CDK2/cyclin A has appeared as an attractive drug targets over the years with diverse therapeutic potentials. A computational strategy based on comparative molecular fields analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) followed by molecular docking studies were performed on a series of 4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline derivatives as potent CDK2/cyclin A inhibitors. The CoMFA and CoMSIA models, using 38 molecules in the training set, gave r(2) (cv) values of 0.747 and 0.518 and r(2) values of 0.970 and 0.934, respectively. 3D contour maps generated by the CoMFA and CoMSIA models were used to identify the key structural requirements responsible for the biological activity. Molecular docking was applied to explore the binding mode between the ligands and the receptor. The information obtained from molecular modeling studies may be helpful to design novel inhibitors of CDK2/cyclin A with desired activity.  相似文献   

5.
Tumors are still one of the main causes of death; therefore, the search for new therapeutic agents that will enable the implementation of effective treatment is a significant challenge for modern pharmacy. One of the important factors contributing to the development of neoplastic diseases is the overexpression of enzymes responsible for the regulation of cell division processes such as cyclin-dependent kinases. Numerous studies and examples of already-developed drugs confirm that isatin is a convenient basis for the development of new groups of inhibitors for this class of enzyme. Therefore, in this work, a new group of potential inhibitors of the CDK2 enzyme, utilizing isatin derivatives and substituted benzoylhydrazines, has been designed based on the application of computational chemistry methods, such as docking and molecular dynamics, and their inhibiting ability was assessed. In the cases of the selected compounds, a synthesis method was developed, and the selected physicochemical properties of the newly synthesized derivatives were estimated. As part of the completed project, new compounds are developed which are potential inhibitors of the CDK2 enzyme.  相似文献   

6.
Trypanosoma cruzi (T. cruzi) is a parasite that affects humans and other mammals. T. cruzi depends on glycolysis as a source of adenosine triphosphate (ATP) supply, and triosephosphate isomerase (TIM) plays a key role in this metabolic pathway. This enzyme is an attractive target for the design of new trypanocidal drugs. In this study, a ligand-based virtual screening (LBVS) from the ZINC15 database using benzimidazole as a scaffold was accomplished. Later, a molecular docking on the interface of T. cruzi TIM (TcTIM) was performed and the compounds were grouped by interaction profiles. Subsequently, a selection of compounds was made based on cost and availability for in vitro evaluation against blood trypomastigotes. Finally, the compounds were analyzed by molecular dynamics simulation, and physicochemical and pharmacokinetic properties were determined using SwissADME software. A total of 1604 molecules were obtained as potential TcTIM inhibitors. BP2 and BP5 showed trypanocidal activity with half-maximal lytic concentration (LC50) values of 155.86 and 226.30 µM, respectively. Molecular docking and molecular dynamics simulation analyzes showed a favorable docking score of BP5 compound on TcTIM. Additionally, BP5 showed a low docking score (−5.9 Kcal/mol) on human TIM compared to the control ligand (−7.2 Kcal/mol). Both compounds BP2 and BP5 showed good physicochemical and pharmacokinetic properties as new anti-T. cruzi agents.  相似文献   

7.
Owing to several mutations, the oncogene Kirsten rat sarcoma 2 viral oncogene homolog (KRAS) is activated in the majority of cancers, and targeting it has been pharmacologically challenging. In this study, using an in silico approach comprised of pharmacophore modeling, molecular docking, and molecular dynamics simulations, potential KRAS G12D inhibitors were investigated. A ligand-based common feature pharmacophore model was generated to identify the framework necessary for effective KRAS inhibition. The chemical features in the selected pharmacophore model comprised two hydrogen bond donors, one hydrogen bond acceptor, two aromatic rings and one hydrophobic feature. This model was used for screening in excess of 214,000 compounds from InterBioScreen (IBS) and ZINC databases. Eighteen compounds from the IBS and ten from the ZINC database mapped onto the pharmacophore model and were subjected to molecular docking. Molecular docking results highlighted a higher affinity of four hit compounds towards KRAS G12D in comparison to the reference inhibitor, BI-2852. Sequential molecular dynamics (MD) simulation studies revealed all four hit compounds them possess higher KRAS G12D binding free energy and demonstrate stable polar interaction with key residues. Further, Principal Component Analysis (PCA) analysis of the hit compounds in complex with KRAS G12D also indicated stability. Overall, the research undertaken provides strong support for further in vitro testing of these newly identified KRAS G12D inhibitors, particularly Hit1 and Hit2.  相似文献   

8.
Control of flavonoid derivatives inhibitors release through the inhibition of neuraminidase has been identified as a potential target for the treatment of H1N1 influenza disease. We have employed molecular dynamics simulation techniques to optimize the 2009 H1N1 influenza neuraminidase X-ray crystal structure. Molecular docking of the compounds revealed the possible binding mode. Our molecular dynamics simulations combined with the solvated interaction energies technique was applied to predict the docking models of the inhibitors in the binding pocket of the H1N1 influenza neuraminidase. In the simulations, the correlation of the predicted and experimental binding free energies of all 20 flavonoid derivatives inhibitors is satisfactory, as indicated by R(2) = 0.75.  相似文献   

9.
New evidence on the impact of dysregulation of the CDK4/6 pathway on breast cancer (BC) cell proliferation has led to the development of selective CDK4/6 inhibitors, which have radically changed the management of advanced BC. Despite the improved outcomes obtained by CDK4/6 inhibitors, approximately 10% of tumors show primary resistance, whereas acquired resistance appears to be an almost ubiquitous occurrence, leading to treatment failure. The identification of differentially expressed genes or genomic mutational signatures able to predict sensitivity or resistance to CDK4/6 inhibitors is critical for medical decision making and for avoiding or counteracting primary or acquired resistance against CDK4/6 inhibitors. In this review, we summarize the main mechanisms of resistance to CDK4/6 inhibitors, focusing on those associated with potentially relevant biomarkers that could predict patients’ response/resistance to treatment. Recent advances in biomarker identification are discussed, including the potential use of liquid biopsy for BC management and the role of multiple microRNAs as molecular predictors of cancer cell sensitivity and resistance to CDK4/6 inhibitors.  相似文献   

10.
Cyclin-dependent kinases (CDKs) 7 and 9 are deregulated in various types of human cancer and are thus viewed as therapeutic targets. Accordingly, small-molecule inhibitors of both CDKs are highly sought-after. Capitalising on our previous discovery of CDKI-73, a potent CDK9 inhibitor, medicinal chemistry optimisation was pursued. A number of N-pyridinylpyrimidin-2-amines were rationally designed, chemically synthesised and biologically assessed. Among them, N-(6-(4-cyclopentylpiperazin-1-yl)pyridin-3-yl)-4-(imidazo[1,2-a]pyrimidin-3-yl)pyrimidin-2-amine was found to be one of the most potent inhibitors of CDKs 7 and 9 as well as the most effective anti-proliferative agent towards multiple human cancer cell lines. The cellular mode of action of this compound was investigated in MV4-11 acute myeloid leukaemia cells, revealing that the compound dampened the kinase activity of cellular CDKs 7 and 9, arrested the cell cycle at sub-G1 phase and induced apoptosis.  相似文献   

11.
Cyclin-dependent kinases (CDKs) play an important role in the cell-division cycle. Synthetic inhibitors of CDKs are based on 2,6,9-trisubstituted purines and are developed as potential anticancer drugs; however, they have low solubility in water. In this study, we proved that the pharmaco-chemical properties of purine-based inhibitors can be improved by appropriate substitution with the adamantane moiety. We prepared ten new purine derivatives with adamantane skeletons that were linked at position 6 using phenylene spacers of variable geometry and polarity. We demonstrated that the adamantane skeleton does not compromise the biological activity, and some of the new purines displayed even higher inhibition activity towards CDK2/cyclin E than the parental compounds. These findings were supported by a docking study, which showed an adamantane scaffold inside the binding pocket participating in the complex stabilisation with non-polar interactions. In addition, we demonstrated that β-cyclodextrin (CD) increases the drug’s solubility in water, although this is at the cost of reducing the biochemical and cellular effect. Most likely, the drug concentration, which is necessary for target engagement, was decreased by competitive drug binding within the complex with β-CD.  相似文献   

12.
Monoamine oxidase B (MAO‐B) is an important drug target for the treatment of neurological disorders. A series of 6‐nitrobenzothiazole‐derived semicarbazones were designed, synthesized, and evaluated as inhibitors of the rat brain MAO‐B isoenzyme. Most of the compounds were found to be potent inhibitors of MAO‐B, with IC50 values in the nanomolar to micromolar range. Molecular docking studies were performed with AutoDock 4.2 to deduce the affinity and binding mode of these inhibitors toward the MAO‐B active site. The free energies of binding (ΔG) and inhibition constants (Ki) of the docked compounds were calculated by the Lamarckian genetic algorithm (LGA) of AutoDock 4.2. Good correlations between the calculated and experimental results were obtained. 1‐[(4‐Chlorophenyl)(phenyl)methylene]‐4‐(6‐nitrobenzothiazol‐2‐yl)semicarbazide emerged as the lead MAO‐B inhibitor, with top ranking in both the experimental MAO‐B assay (IC50: 0.004±0.001 μM ) and in computational docking studies (Ki: 1.08 μM ). Binding mode analysis of potent inhibitors suggests that these compounds are well accommodated by the MAO‐B active site through stable hydrophobic and hydrogen bonding interactions. Interestingly, the 6‐nitrobenzothiazole moiety is stabilized in the substrate cavity with the aryl or diaryl residues extending up into the entrance cavity of the active site. According to our results, docking experiments could be an interesting approach for predicting the activity and binding interactions of this class of semicarbazones against MAO‐B. Thus, a binding site model consisting of three essential pharmacophoric features is proposed, and this can be used for the design of future MAO‐B inhibitors.  相似文献   

13.
14.
15.
16.
The rapid and global propagation of the novel human coronavirus that causes severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has produced an immediate urgency to discover promising targets for the treatment of this virus. In this paper, we studied the spike protein S2 domain of SARS-CoV-2 as it is the most conserved component and controls the crucial fusion process of SARS-CoV-2 as a target for different databases of small organic compounds. Our in silico methodology, based on pharmacophore modeling, docking simulation and molecular dynamics simulations, was first validated with ADS-J1, a potent small-molecule HIV fusion inhibitor that has already proved effective in binding the HR1 domain and inhibiting the fusion core of SARS-CoV-1. It then focused on finding novel small molecules and new peptides as fusion inhibitors. Our methodology identified several small molecules and peptides as potential inhibitors of the fusion process. Among these, NF 023 hydrate (MolPort-006-822-583) is one of the best-scored compounds. Other compounds of interest are ZINC00097961973, Salvianolic acid, Thalassiolin A and marine_160925_88_2. Two interesting active peptides were also identified: AP00094 (Temporin A) and AVP1227 (GBVA5). The inhibition of the spike protein of SARS-CoV-2 is a valid target to inhibit the virus entry in human cells. The discussed compounds reported in this paper led to encouraging results for future in vitro tests against SARS-CoV-2.  相似文献   

17.
The expanding clinical application of CDK4- and CDK6-inhibiting drugs in the managements of breast cancer has raised a great interest in testing these drugs in other neoplasms. The potential of combining these drugs with other therapeutic approaches seems to be an interesting work-ground to explore. Even though a potential integration of CDK4 and CDK6 inhibitors with radiotherapy (RT) has been hypothesized, this kind of approach has not been sufficiently pursued, neither in preclinical nor in clinical studies. Similarly, the most recent discoveries focusing on autophagy, as a possible target pathway able to enhance the antitumor efficacy of CDK4 and CDK6 inhibitors is promising but needs more investigations. The aim of this review is to discuss the recent literature on the field in order to infer a rational combination strategy including cyclin-D1/CDK4-CDK6 inhibitors, RT, and/or other anticancer agents targeting G1-S phase cell cycle transition.  相似文献   

18.
The design and discovery of selective cyclin-dependent kinase 4 (CDK4) inhibitors have been actively pursued in order to develop therapeutic cancer treatments. By means of a consecutive computational protocol involving homology modeling, docking experiments, and molecular dynamics simulations, we examine the characteristic structural and dynamic properties that distinguish CDK4 from CDK2 in its complexation with selective inhibitors. The results for all three CDK4-selective inhibitors under investigation show that the large-amplitude motion of a disordered loop of CDK4 is damped out in the presence of the inhibitors whereas their binding in the CDK2 active site has little effect on the loop flexibility. It is also found that the binding preference of CDK4- selective inhibitors for CDK4 over CDK2 stems from the reduced solvent accessibility in the active site of the former due to the formation of a stable hydrogen-bond triad by the Asp99, Arg101, and Thr102 side chains at the top of the active-site gorge. Besides the differences in loop flexibility and solvent accessibility, the dynamic stabilities of the hydrogen bonds between the inhibitors and the side chain of the lysine residue at the bottom of the active site also correlate well with the relative binding affinities of the inhibitors for the two CDKs. These results highlight the usefulness of this computational approach in evaluating the selectivity of a CDK inhibitor, and demonstrate the necessity of considering protein flexibility and solvent effects in designing new selective CDK4-selective inhibitors.  相似文献   

19.
Chitinolytic β-N-acetyl-d-hexosaminidases, as a class of chitin hydrolysis enzyme in insects, are a potential species-specific target for developing environmentally-friendly pesticides. Until now, pesticides targeting chitinolytic β-N-acetyl-d-hexosaminidase have not been developed. This study demonstrates a combination of different theoretical methods for investigating the key structural features of this enzyme responsible for pesticide inhibition, thus allowing for the discovery of novel small molecule inhibitors. Firstly, based on the currently reported crystal structure of this protein (OfHex1.pdb), we conducted a pre-screening of a drug-like compound database with 8 × 10(6) compounds by using the expanded pesticide-likeness criteria, followed by docking-based screening, obtaining 5 top-ranked compounds with favorable docking conformation into OfHex1. Secondly, molecular docking and molecular dynamics simulations are performed for the five complexes and demonstrate that one main hydrophobic pocket formed by residues Trp424, Trp448 and Trp524, which is significant for stabilization of the ligand-receptor complex, and key residues Asp477 and Trp490, are respectively responsible for forming hydrogen-bonding and π-π stacking interactions with the ligands. Finally, the molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) analysis indicates that van der Waals interactions are the main driving force for the inhibitor binding that agrees with the fact that the binding pocket of OfHex1 is mainly composed of hydrophobic residues. These results suggest that screening the ZINC database can maximize the identification of potential OfHex1 inhibitors and the computational protocol will be valuable for screening potential inhibitors of the binding mode, which is useful for the future rational design of novel, potent OfHex1-specific pesticides.  相似文献   

20.
In this contribution, four new compounds synthesized from 4-hydroxycoumarin and tyramine/octopamine/norepinephrine/3-methoxytyramine are characterized spectroscopically (IR and NMR), chromatographically (UHPLC-DAD), and structurally at the B3LYP/6-311++G*(d,p) level of theory. The crystal structure of the 4-hydroxycoumarin-octopamine derivative was solved and used as a starting geometry for structural optimization. Along with the previously obtained 4-hydroxycoumarin-dopamine derivative, the intramolecular interactions governing the stability of these compounds were quantified by NBO and QTAIM analyses. Condensed Fukui functions and the HOMO-LUMO gap were calculated and correlated with the number and position of OH groups in the structures. In vitro cytotoxicity experiments were performed to elucidate the possible antitumor activity of the tested substances. For this purpose, four cell lines were selected, namely human colon cancer (HCT-116), human adenocarcinoma (HeLa), human breast cancer (MDA-MB-231), and healthy human lung fibroblast (MRC-5) lines. A significant selectivity towards colorectal carcinoma cells was observed. Molecular docking and molecular dynamics studies with carbonic anhydrase, a prognostic factor in several cancers, complemented the experimental results. The calculated MD binding energies coincided well with the experimental activity, and indicated 4-hydroxycoumarin-dopamine and 4-hydroxycoumarin-3-methoxytyramine as the most active compounds. The ecotoxicology assessment proved that the obtained compounds have a low impact on the daphnia, fish, and green algae population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号