首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is shown by differential scanning calorimetry (DSC) measurements that lightly sulfonated polystyrene (SPS) is partially miscible with polysulfone (PSF), polycarbonate (PC), polyetherimide (PEI), and a thermotropic liquid crystalline polymer (LCP). Fourier transform infrared analysis confirms that the miscibility of SPS and PSF, and of SPS and PC, comes from the ion–dipole interaction between the sulfonate groups of SPS and the polar groups of PSF and PC, respectively. After the addition of SPS to LCP/PSF, LCP/PC, and LCP/PEI blends, this specific interaction leads to the compatibilization of SPS in these blends, which is revealed by inward glass transition temperature shifts of component polymers in DSC and dynamic mechanical analysis thermograms and by a much finer dispersion of the minor LCP phase in these matrix polymers. The utilization of SPS as the compatibilizer results in a stronger interfacial adhesion between LCP and matrix phases and improves the mechanical performances of LCP/PSF, LCP/PC, and LCP/PEI blends as well. Compared with ternary LCP/PSF, LCP/PC, and LCP/PEI blends with polystyrene as an inert third component, the ternary LCP/SPS/PSF, LCP/SPS/PC, and LCP/SPS/PEI blends have significantly enhanced tensile strengths and moduli, with acceptable processabilities at the same time. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 67:2141–2151, 1998  相似文献   

2.
Polyblends of nylon 6 and liquid crystalline polymer (LCP) (Vectra A 950) are immiscible and highly incompatible, with resultant poor interfacial adhesion, large phase domains, and poor mechanical properties. In the present work, compatibilizing strategies are put forward for blends containing nylon and LCP. Effects of three types of compatibilizers, including ionomer Zn–sulfonated polystyrene (SPS), reactive copolymer styrene–maleic anhydride (SMA), functional grafted copolymers—polypropylene grafted glycidyl methacrylate (PP‐g‐GMA) and polypropylene grafted maleic anhydride (PP‐g‐MAH)—are studied in the aspects of morphology and dynamic mechanical behavior. The addition of compatibilizers decreases the domain size of the dispersed phase and results in improved interfacial adhesion between LCP and matrix. The compatibilization mechanism is discussed by way of diffuse reflectance Fourier transform spectroscopy (DRIFT), showing the reaction between compatibilizers and matrix nylon 6. Mechanical properties are improved by good interfacial adhesion. The contribution of SMA to mechanical properties is more obvious than that of Zn‐SPS and grafted PPs used. The blending procedure is correlated with the improvement of mechanical properties by the addition of compatibilizer. Two‐step blending is demonstrated as an optimum method to obtain composites with better mechanical properties as a result of a greater chance for LCP to contact the compatibilizer. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 1452–1461, 2003  相似文献   

3.
A radiation grafted copolymer of polycarbonate (PC) and polystyrene (PS) was used as a compatibilizer of PC/PS melt blends. The compatibility and morphology of PC/PS/PC-g-PS blends were studied by differential scanning calorimetry and scanning electron microscopy. As a consequence of the addition of PC-g-PS, the compatibility of PC/PS blends was improved; the dimensions of the dispersed phases and the interfacial tension between the two phases were reduced. Additionally, stabilization against gross segregation and interfacial adhesion of the blends were also improved by adding PC-g-PS as a compatibilizer. © 1998 SCI.  相似文献   

4.
Polymer materials with improved properties can be obtained through polymer blends. As a polymer mixture is generally immiscible and incompatible, it is necessary to develop new methods to improve the interfacial adhesion. The aim of this work is to find formulations and associated processes to upgrade engineering polystyrene (PS) and polycarbonate (PC) polymer blends with the objective of using the best “process‐formulation” couple. In this study, blends of PS/PC were prepared in molten medium using reactive extrusion after UV‐irradiation. The effects of UV‐irradiation on some properties of blends under molten medium were investigated by differential scanning calorimetry (DSC), fourier transform infrared (FTIR), and thermogravimetric analysis (TGA). The data showed that the presence of polycarbonate in the blend increased the tensile strength and elongation at break with respect to pure PS. The mechanical properties of the blends were improved after irradiation. All irradiated blends are thermally more stable than those nonirradiated. Chemical changes can be clearly seen in FTIR spectra through two bands assigned to C?O and OH groups. The mutual influence between the PS/PC polymer blends compositions during UV‐irradiation was studied. PS and PC have different photo‐mechanisms due to the larger UV absorption of polystyrene and formation of more stable tertiary carbon radicals. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

5.
Liquid crystalline polymer (LCP) blends with a thermotropic LCP dispersed in the form of microspheres is studied to show the role of LCP spheres. Polycarbonate (PC), p‐hydroxybenzoic acid–poly(ethylene terephthalate) copolyester, and random styrene–maleic anhydride copolymer are used as the matrix, the dispersed phase, and the compatibilizer, respectively. A scanning electron microscopy observation shows the formation of LCP spheres with improved interfacial adhesion in the injection‐molded samples via compatibilization. The mechanical tests show increased modulus, elongation at break, and fracture‐absorbed energy of blends of LCP spheres‐dispersed PC. This shows an optimistic potential for the dispersed LCP phase, in spite of its morphology in the form of fibrils for reinforcing the matrix or in the form of microspheres for toughening the matrix. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 1493–1499, 2003  相似文献   

6.
WB Xie  KC Tam  CY Yue  YC Lam  L Li  X Hu 《Polymer International》2003,52(5):733-739
A co‐polyester liquid crystalline polymer (LCP) was melt blended with an acrylonitrile–butadiene–styrene copolymer (ABS). LCP fibrils are formed and a distinct skin/core morphology is observed in the injection moulded samples. At higher LCP concentration (50 wt%), phase inversion occurs, where the dispersed LCP phase becomes a co‐continuous phase. While the tensile strength and Young's modulus remain unchanged with increasing LCP content up to 30 wt% LCP, a significant enhancement of the modulus at 50 wt% LCP is observed due to the formation of co‐continuous morphology. The blend modulus is lower than the values predicted by the rule of mixtures, suggesting a poor interface between the LCP droplets and ABS matrix. A copolymer of styrene and maleic anhydride (SMA) was added in the LCP/ABS blends during melt blending. It is observed that SMA has a compatibilizing effect on the blend system and an optimum SMA content exists for mechanical properties enhancement. SMA improves the interfacial adhesion, whereas excess of SMA reduces the LCP fibrillation. Copyright © 2003 Society of Chemical Industry  相似文献   

7.
Microfibrillar-reinforced composites based on two dispersed phases, liquid crystalline polymer (LCP) and recycled poly(ethylene terephthalate) (rPET), and polystyrene (PS) were prepared using extrusion process. The rheological behavior, morphology, and thermal stability of LCP/PS and rPET/PS blends containing various dispersed phase contents were investigated. All blends and LCP exhibited shear thinning behavior, whereas Newtonian fluid behavior was observed for rPET. The incorporation of both LCP and rPET into PS significantly improved the processability. The potential of rPET as a processing lubricant by bringing down the melt viscosity of the blend system was as good as LCP. The elongated LCP domains were clearly observed in as-extruded strand. Although the viscosity ratio of rPET/PS system was lower than that of LCP/PS system, most rPET domains appeared as small droplets. An addition of LCP and rPET into PS matrix improved the thermal resistance in air significantly. The obtained results suggested the high potential of rPET as a processing aid and thermally stable reinforcing-material similar to LCP. The mechanical properties of the LCP-containing blends were mostly higher than those of the corresponding rPET-containing blends when compared at the same blend composition.  相似文献   

8.
Attempts to extend the IPN technology to liquid crystalline polymer (LCP) systems have been made in search for a new approach for enhancing the compatibility of liquid crystalline polymer with engineering thermoplastics. A new type of interpenetrating polymer network based on liquid crystalline polymer : semi‐interpenetrating liquid crystalline polymer network comprising liquid crystalline polymer PET/60PHB (LCP) and crosslinked polystyrene (PS) (for short: semi‐ILCPN LCP/PS) has been successfully prepared. The compatibility and thermal properties of the semi‐ILCPN LCP/PS with different amount of crosslinking agent were investigated by FTIR, SEM, DSC, and TGA, respectively. Furthermore, the possible application of the semi‐ILCPN LCP/PS as a new kind of compatibilizer in PPO/LCP blends was also studied and discussed. Well‐compatibilized PPO/LCP composites with considerably improved mechanical properties were obtained. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 1141–1150, 2000  相似文献   

9.
We developed an energy model derived from the first principle for multilayer configurations to enhance our understanding of the interfacial property between two polymers under shear deformation. We carried out specific experiments satisfying the boundary and loading conditions of the model to obtain the energy dissipation factor (β), which characterized and quantified the interfacial property. Two polymer pairs, the miscible system polystyrene (PS)/high‐impact polystyrene (HIPS) and the immiscible system polycarbonate (PC)/liquid‐crystal polymer (LCP), were investigated. As expected, β was zero for PS/HIPS, reflecting the strong interaction at the PS/HIPS interface. For PC/LCP, the value of β could be significant, and its behavior was complex; it reflected the thermal sensitivity and thermal history effect of the PC/LCP interface. A positive value of β also indicated the possibility of slip at the interface and provided an explanation for the negative deviation from the rule of mixture. This complex behavior of the interface was attributed to the changes in the phases and microstructure of LCPs and, therefore, the LCP/PC interface as thermal cycling was carried out in the melting/nematic range of LCPs. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 258–269, 2003  相似文献   

10.
Waste rubber powder/polystyrene (WRP/PS) blends with different weight ratio were prepared with styrene grafted styrene butadiene rubber copolymer (PS-g-SBR) as a compatibilizer. The graft copolymer of PS-g-SBR was synthesized by emulsion polymerization method and confirmed through Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC). The copolymer at different weight ratio was subsequently added into the blends. The effects of weight ratio of WRP/PS and compatibilizer loading on mechanical properties were investigated. PS/WRP blends in a weight ratio of 80/20 showed higher impact strength. Moreover, the impact strength of the blend materials increased with the addition of SBR-g-PS, however, decreased at a high loading of the copolymer. The morphology and thermal properties of WRP/PS blends were examined by DSC, scanning electron microscopy (SEM), thermogravimetry (TG). DSC indicated that compared with PS/WRP blend, the glass transition temperature (T g) of PS matrix phase in PS/WRP/SBR-g-PS blend shifted to low temperature because of the formation of chemical crosslinks or boundary layer between PS and WRP, and the T g of WRP phase of both the PS/WRP and PS/WRP/SBR-g-PS blends did not appear. SEM results showed that interfacial adhesion in the blends with the PS-g-SBR copolymer was improved. The morphology was a typical continuous–discontinuous structure. PS and WRP presented continuous phase and discontinuous phase, respectively, indicating the moderate interface adhesion between WRP and PS matrix. TG illustrated that the onset of degradation temperature in the PS/WRP/PS-g-SBR blend decreased slightly by contrast with PS/WRP blend and the degradation of PS/WRP blends with and without SBR-g-PS was completed about at the same values.  相似文献   

11.
The influence of poly[(ethylene-co-vinyl acetate)-g-polystyrene] (EVA-g-PS) on the mechanical and morphological properties of polystyrene and the blends with EVA copolymers has been investigated. The melt blends have been performed in a twin-screw extruder. The addition of the graft copolymer enhances the mechanical properties and impact resistance of the PS matrix and PS/EVA (90 : 10 wt %) blends. Better results on impact strength and elongation at break have been achieved by using a EVA-g-PS graft copolymer with a higher EVA proportion by weight. This graft copolymer also contains a lower molecular weight of the PS-grafted segments than the PS matrix. Morphological studies by scanning electron microscopy revealed some interfacial adhesion between the components in the compatibilized polymer blends. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 65: 2141–2149, 1997  相似文献   

12.
Kumin Yang  Chang Dae Han 《Polymer》1996,37(26):5795-5805
Binary blends of polystyrene (PS) and polyisoprene (PI) were prepared by rapidly precipitating a homogeneous solution, consisting of PS, PI and toluene, into methanol under vigorous agitation. In this study, a series of PSs and PIs were synthesized via anionic polymerization in our laboratory. Portions of the as-precipitated blend were annealed at 110°C for different periods up to 12 h and the rest was extruded at 160 or 180°C using a capillary die. The extrudates were also annealed for different periods up to 12 h. Then, the morphology of the as-precipitated blend with and without annealing, and the extrudate with and without annealing, was investigated using transmission or scanning electron microscopy. We found that: (1) the asprecipitated blend had a co-continuous (or quasi co-continuous) morphology, often observed in two-phase polymer mixtures which have undergone spinodal decomposition; (2) annealing or extrusion transformed the initially co-continuous (or quasi co-continuous) morphology of the as-precipitated blend into a well-defined dispersed two-phase morphology; (3) during annealing, the elongated droplets in an extrudate specimen recoiled considerably, the extent of which depended upon the duration of annealing. The effects of blend composition and the viscosity ratio of the constituent components on two-phase blend morphology are discussed.  相似文献   

13.
Two liquid‐crystalline polyesters (LCPs) with different chain rigidities were synthesized and melt‐blended with polycarbonate (PC) at an LCP concentration of 2 wt %. The first LCP (LCP1) was based on hydroxybenzoic acid (HBA), hydroquinone (HQ), sebacic acid (SEA), and suberic acid (SUA) and contained a relatively high concentration of flexible units (SEA and SUA). The other one (LCP2) was based on HBA, hydroxynaphthoic acid, HQ, and SEA and contained a lower concentration of flexible units. LCP2 had a much lower melting point, a higher clearing temperature, and a lower shear viscosity than LCP1. The blending was carried out at 265, 280, and 300°C for both systems. The extent of the viscosity reduction induced by the addition of LCP1 depended on the compounding temperature, and the lowest viscosity was achieved with blending at 280°C. This was attributed to the large interfacial area and interactions between the flexible segments of LCP1 and PC chains at the interface. For PC/LCP2, the viscosity reduction was not significantly dependent on the compounding temperature, and when it was compounded at 280°C, its viscosity was significantly higher than that of PC/LCP1 at high shear rates, even though LCP2 had lower viscosity. A scanning electron microscopy study revealed that, with compounding at 265 and 280°C, LCP2 was poorly dispersed in the PC matrix in comparison with LCP1, and the glass‐transition‐temperature depression caused by the addition of LCP2 was relatively small. This indicated that interfacial interactions in PC/LCP2 were weaker, thereby explaining their different rheological behavior in comparison with PC/LCP1. With compounding at 300°C, the compatibility of both systems improved because of transesterification reactions, but this did not lead to a lower viscosity because of the lack of physical interfacial interactions. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 960–969, 2004  相似文献   

14.
The relationship between the microstructure developed during injection molding of liquid crystalline polymers (LCPs) containing blends and their mechanical properties, was studied. A wholly aromatic copolyester LCP was melt blended in various levels with polycarbonate (PC), poly(butylene terephthalate) (PBT), Nylon 6 (N-6), and amorphous nylon (AN). In all cases the LCP was the minor component. The resulting injection molded structure had a distinct skin core morphology, where elongated fibrous LCP particles comprised the skin layer and spherical and ellipsoidal ones composed the core section. The highest elongation and the finest diameter LCP fibrils were obtained with AN/LCP system, followed by PC/LCP. PBT/LCP blends showed a coarser morphology, while N-6/LCP system did not correlate with the tensile moduli of the injection molded specimens. AN/LCP blends demonstrated the highest moduli values, consistent with the highest orientations observed using electron microscopy, followed by PC/LCP, PBT/LCP, and N-6/LCP. Finally, tensile strength levels were correlated with both orientation levels and interfacial adhesion between the polyblend components. AN/LCP that exhibited the highest orientation and good adhesion appearance gave the highest tensile strength values followed by PC/LCP, PBT/LCP, and N-6/LCP polyblends.  相似文献   

15.
Compatibilizing effects of diblock copolymer polystyrene-block-poly(ethylene-co-propylene) (SEP) on the morphology and mechanical properties of immiscible blends of poly(propylene) (PP) and polystyrene (PS) were investigated. Notched impact strength, yield stress, elongation at yield and Young's modulus were determined as a function of different weight ratios of PP and PS and different amounts of added SEP as well. Scanning electron microscopy revealed a two-phase morphology of PP/PS blends, which exhibit poor mechanical properties. Even 2,5 wt.-% of SEP added to PP/PS blends can improve the notched impact strength and elongation at yield compared to non-compatibilized PP/PS blends. 10 wt.-% of SEP compatibilizer converted the brittle PP/PS blend to quite impactresistant polymeric material. Mechanical properties were improved because of the morphological changes and increased interfacial adhesion as a result of SEP localization between PP and PS phases. An analysis of yield stress data in terms of theoretical models showed that yield stress values of binary PP/PS blends can be predicted with Nielsen's model.  相似文献   

16.
A thermotropic liquid crystalline polyester (LCP) with a long flexible spacer group in the main chain was prepared by melt polymerization and mixed with poly(ethylene terephthalate) (PET). Differential scanning calorimetry (DSC) and scanning electron microscopy (SEM) studies revealed that the crystallization of PET was accelerated by the addition of LCP in the matrix. Interfacial adhesion between PET and LCP was much improved by introduction of a long flexible spacer in the main chain. Fibers of the blend with 30 wt percent of LCP had fine microfibrillar structure with a large aspect ratio formed in the matrix. Initial modulus and ultimate strength were highly elevated by the addition of LCP due to good interfacial adhesion and microfibrillar structure of LCP in the blend.  相似文献   

17.
Polymeric gradient film consisting of the plastic nanoparticles in addition to an elastomer matrix was created by driving the charged sulfonated polystyrene (PS) nanoparticles in polydimethylsiloxane (PDMS) matrix under direct-current electric field. The gradient morphology was frozen by thermal curing. The morphology, composition, damping, and mechanical properties of cured PS/PDMS gradient film containing 10 wt % of PS nanoparticles were measured with scanning electron microscopy, energy-disperse spectroscopy, and dynamic thermal mechanic analysis and tensile test, respectively. In comparison with the isotropic PS/PDMS film, the gradient film shows a better damping property, and a higher tensile strength and elongation at breaking. The interpretation in terms of deformation and fracture mechanism of gradient structure was proposed. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48401.  相似文献   

18.
A thermotropic liquid crystalline polymer (LCP) with an alkyl side-group was synthesized. Blends of the LCP with polycarbonate (PC) were prepared by coprecipitatton from a common solvent. The rheological behavior of the LCP/PC blends was found to be very different from that of PC, and significant viscosity reductions were observed in the temperature range of 200–230°C. Blends of different LCP compositions were extruded with different draw ratio from a capillary rheometer. The ultimate tensile strength showed a maximum at a 10 wt% LCP composition in the blends. It decreased for compositions greater the 10 wt% LCP, whereas the initial modulus increased with increasing LCP content. The morphology of the blends was found to be affected by their compositions. Scanning electron microscopy (SEM) studies revealed finely dispersed spherical LCP domains in the PC matrix. The SEM micrographs also showed a poor adhesion between the two phases.  相似文献   

19.
Blends of a PPO–PS alloy with a liquid crystalline polymer have been studied for their dynamic properties, rheology, mechanical properties, and morphology. This work is an extension of our previous work on PPO/LCP blends. The addition of the LCP to the PPO–PS alloy resulted in a marked reduction in the viscosity of the blends and increased processibility. The dynamic studies showed that the alloy is immiscible and incompatible with the LCP at all concentrations. The tensile properties of the blends showed a drastic increase with the increase in LCP concentration, thus indicating that the LCP acted as a reinforcing agent. The tensile strength, secant modulus, and impact strength of the PPO–PS/LCP blends were significantly higher than that of PPO/LCP blends. Morphology of the injection molded samples of the PPO–PS/LCP blends showed that the in situ formed fibrous LCP phase was preserved in the solidified form. A distinct skin–core morphology was also seen for the blends, particularly with low LCP concentrations. The improvement of the mechanical properties of the blends is attributed to these in situ fibers of LCP embedded in the PPO–PS matrix. The improvement in the properties of PPO–PS/LCP over PPO/LCP is also attributed to the addition of the PS which consolidates the matrix. © 1995 John Wiley & Sons, Inc.  相似文献   

20.
The mechanical properties and fracture behavior of natural rubber/poly-(methyl methacrylate) blends were investigated as a function of composition, graft copolymer concentration, and mixing conditions. The mechanical properties and failure behavior vary with the blend ratio, graft copolymer concentration, and mixing conditions. Various two-phase models were used to fit the experimental mechanical properties. Mechanical properties such as stress–strain behavior, tensile strength, tensile modulus, tear strength, and Izod impact strength were evaluated as a function of compatibilizer concentration. The domain size of the dispersed phase decreases with graft copolymer concentration followed by a leveling off at higher concentration. The mechanical properties attain a maximum value at the leveling point, which is an indication of interfacial saturation and the attainment of maximum interfacial adhesion between the homopolymers. Tensile and tear fracture surfaces were examined by scanning electron microscopy. The detachment of the dispersed domains from the matrix is an indication of no adhesion between the two phases in the case of uncompatibilized blends. Microfibrils between the matrix and the dispersed phase indicate a sign of interfacial adhesion between the phases in the case of compatibilized blends. © 1997 John Wiley & Sons, Inc. J Appl Polm Sci 65:1245–1255, 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号