首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Copolymers of L-lactic acid (LLA) with DL-mandelic acid (DLMA), 4-hydroxybenzoic acid, 4-acetoxybenzoic acid, DL-malic acid, or anhydrous citric acid were synthesized via direct copolycondensation in the presence of 1,4-butanediol, using stannous octoate as catalyst. The effect of the comonomer and the comonomer ratio on polycondensation and the glass transition temperature were investigated. The glass transition temperature of amorphous poly(L-lactic acid-co-DL-mandelic acid) increased linearly from 33° to 56°C as the mandelic acid composition was increased from 0 to 45 mol %. For urethane synthesis, prepolymers of LLA and DLMA were condensation polymerized with compositions of 100/0, 90/10, and 80/20 (mol % in feed). The preparation of poly(ester-urethane) (PEU) was carried out in a stirred glass reactor, using 1,6-hexamethylene diisocyanate and isophorone diisocyanate in melt. The glass transition temperature of poly(L-lactic acid-co-DL-mandelic acid-urethanes) showed a marked increase with increased mandelic acid composition. The molecular weights of these urethanes were lower than for PEU based on poly(L-lactic acid). Such a depression in the degree of polymerization is attributed to the steric hindrance of the bulky phenyl group as a side chain of mandelic acid. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 63: 1865–1872, 1997  相似文献   

2.
The hydrolysis behaviour of lactic acid based poly(ester-urethane)s has been studied in a buffer solution of pH 7·00 at 37 and 55°C. Samples were prepared using a straight two step lactic acid polymerization process. The lactic acid was first polymerized by condensation with a low molecular weight by hydroxyl terminated telechelic prepolymer and the molecular weight then was increased with a chain extender such as a diisocyanate. In the hydrolysis study, the effect on the hydrolysis rate of different stereostructures (different amount of D -units in the polymer chain) and the length of the ester units were studied. The rate of hydrolysis was examined by various techniques including weighing (water absorption and weight loss), GPC (molecular weight and polydispersity), and DSC (thermal properties). GPC measurements showed that at 37°C the weight average molecular weight of the poly(ester-urethane)s started to decrease slowly during the first week of hydrolysis, but that at 55°C the weight average molecular weight decreased dramatically during the first week of hydrolysis. Significant mass loss occurred later at both temperatures. © 1998 Society of Chemical Industry  相似文献   

3.
Poly(lactic acid) (PLA) and poly(ethylene glycol) (PEG) were melt-blended and extruded into films in the PLA/PEG ratios of 100/0, 90/10, 70/30, 50/50, and 30/70. It was concluded from the differential scanning calorimetry and dynamic mechanical analysis results that PLA/PEG blends range from miscible to partially miscible, depending on the concentration. Below 50% PEG content the PEG plasticized the PLA, yielding higher elongations and lower modulus values. Above 50% PEG content the blend morphology was driven by the increasing crystallinity of PEG, resulting in an increase in modulus and a corresponding decrease in elongation at break. The tensile strength was found to decrease in a linear fashion with increasing PEG content. Results obtained from enzymatic degradation show that the weight loss for all of the blends was significantly greater than that for the pure PLA. When the PEG content was 30% or lower, weight loss was found to be primarily due to enzymatic degradation of the PLA. Above 30% PEG content, the weight loss was found to be mainly due to the dissolution of PEG. During hydrolytic degradation, for PLA/PEG blends up to 30% PEG, weight loss occurs as a combination of degradation of PLA and dissolution of PEG. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 66: 1495–1505, 1997  相似文献   

4.
This study examines the influence of three different minerals, that is, clay, calcium carbonate, and quartz on the physical, thermal, and mechanical properties of poly(lactic acid) (PLA)/poly(methyl methacrylate) blend. Rheological behavior and phase structure were initially studied by small-amplitude oscillatory shear rheology. Clay- and quartz-filled materials presented an increase in viscosity at low frequency associated with the presence of a yield stress. However, this behavior was not observed for calcium carbonate filled materials due to a matrix degradation effect. To elucidate this aspect, thermal stability and thermal properties were examined by thermogravimetric analysis and differential scanning calorimetry, showing that calcium carbonate promotes degradation of the PLA phase. No nucleating effect was observed in the presence of the minerals. Dynamical mechanical analysis and mechanical characterization revealed an increase of the overall softening temperature and, a reinforcing effect for clay- and quartz-based composites. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 46927.  相似文献   

5.
Biodegradable poly(lactic acid) (PLA) composites were prepared using an innovative combination of wood fiber (WF) and 1,3,2,4‐bis(3,4‐dimethylobenzylideno)sorbitol (DMDBS). DMDBS acted as an effective nucleating agent, which improved the mechanical properties and slowed down the degradation of the WF/PLA composites. The enzymatic degradation of the composites was examined by immersing in proteinase K or cellulase buffer. The presence of DMDBS resulted in a 26.7% increase of the crystallinity compared to the WF/PLA composites. The increase in crystallinity enhanced the thermal stability and tensile strength of the WF/DMDBS/PLA composites by 8.5%. The durability of the WF/DMDBS/PLA composites after nucleated modification was enhanced after enzymolysis. After nucleated modification, the surface of the WF/PLA composites showed clear cracks due to degradation, while these appeared about 2 weeks later in the case of the WF/DMDBS/PLA composites. The results revealed that the introduction of cellulase degraded WF in the composites, which increased hydrolysis or enzymolysis sites. The combination of nucleated modification and enzyme buffer gave an expanded downstream application of WF/PLA composites in packaging and agricultural materials. © 2019 Society of Chemical Industry  相似文献   

6.
Poly(lactic acid)/hydroxyapatite (PLA/HAP) nanocomposite films with various compositions, 2 ? 70 parts HAP per 100 of the PLA polymer (pph), were made via the solution casting method. Transmission electron microscopy images of the PLA/HAP films exhibited spherical particles in the size range from nearly 10 nm to 100 nm dispersed within the polymeric matrix. Fourier transform infrared spectra of the nanocomposites revealed an interaction between PLA and HAP nanoparticles by carbonyl group peak shift. Incorporation of HAP nanoparticles in the PLA matrix stimulated crystal growth verified by differential scanning calorimetry. The films irradiated with γ‐rays at a dose of 30 kGy also showed an increase in crystallinity. The X‐ray diffraction patterns of the irradiated PLA exhibited two new peaks at around 16° and 19°, assigned to the α crystalline phase of PLA; these were absent in the unirradiated nanocomposites. Significant ductile behavior was observed in both irradiated and unirradiated PLA nanocomposites containing 2 and 10 pph of HAP. However, the irradiated nanocomposites had higher tensile strength. © 2013 Society of Chemical Industry  相似文献   

7.
Poly(L ‐lactic acid) (PLLA), poly(ε‐caprolactone) (PCL), and their films without or blended with 50 wt% poly(ethylene glycol) (PEG) were prepared by solution casting. Porous films were obtained by water‐extraction of PEG from solution‐cast phase‐separated PLLA‐blend‐PCL‐blend‐PEG films. The effects of PLLA/PCL ratio on the morphology of the porous films and the effects of PLLA/PCL ratio and pores on the physical properties and biodegradability of the films were investigated. The pore size of the blend films decreased with increasing PLLA/PCL ratio. Polymer blending and pore formation gave biodegradable PLLA‐blend‐PCL materials with a wide variety of tensile properties with Young's modulus in the range of 0.07–1.4 GPa and elongation at break in the range 3–380%. Pore formation markedly increased the PLLA crystallinity of porous films, except for low PLLA/PCL ratio. Polymer blending as well as pore formation enhanced the enzymatic degradation of biodegradable polyester blends. Copyright © 2006 Society of Chemical Industry  相似文献   

8.
Blends of poly(L ‐lactic acid) (PLA) and poly(butylene succinate) (PBS) were prepared with various compositions by a melt‐mixing method and the phase behavior, miscibility, and morphology were investigated using differential scanning calorimetry, wide‐angle X‐ray diffraction, small‐angle X‐ray scattering techniques, and polarized optical microscopy. The blend system exhibited a single glass transition over the entire composition range and its temperature decreased with an increasing weight fraction of the PBS component, but this depression was not significantly large. The DSC thermograms showed two distinct melting peaks over the entire composition range, indicating that these materials was classified as semicrystalline/semicrystalline blends. A depression of the equilibrium melting point of the PLA component was observed and the interaction parameter between PLA and PBS showed a negative value of ?0.15, which was derived using the Flory–Huggins equation. Small‐angle X‐ray scattering revealed that, in the blend system, the PBS component was expelled out of the interlamellar regions of PLA, which led to a significant decrease of a long‐period, amorphous layer thickness of PLA. For more than a 40% PBS content, significant crystallization‐induced phase separation was observed by polarized optical microscopy. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 647–655, 2002  相似文献   

9.
Poly(L ‐lactic acid) (PLLA) has good biocompatibility, biodegradability and physical properties. However, one of the drawbacks of PLLA is its brittleness due to the stiff backbone chain. In this work, a largely improved tensile toughness (extensibility) of PLLA was achieved by blending it with poly(ε‐caprolactone) (PCL). To obtain a good dispersion of PCL in the PLLA matrix, blends were prepared via a solution‐coagulation method. An increase in extensibility of PLLA of more than 20 times was observed on adding only 10 wt% of PCL, accompanied by a slight decrease in tensile strength. However, annealing of the samples led to a sharp decrease of extensibility due to phase separation and a change of crystalline structure. To conserve the good mechanical properties of PLLA/PCL blends, the blends were crosslinked via addition of dicumyl peroxide during the preparation process. For the crosslinked blend films, the extensibility was maintained nearly at the original high value even after annealing. Morphological analysis of cryo‐fractured and etched‐smoothed surfaces of the PLLA/PCL blends was carried out using scanning electron microscopy. Differential scanning calorimetry and polarized light microscopy experiments were used to check the possible change of crystallinity, melting point and crystal morphology for both PLLA and PCL after annealing. The results indicated that the combination of solution‐coagulation and crosslinking resulted in a good and stable dispersion of PCL in the PLLA matrix, which is considered as the main reason for the observed improvement of tensile toughness. Copyright © 2010 Society of Chemical Industry  相似文献   

10.
直接缩聚合成聚乳酸研究进展   总被引:8,自引:0,他引:8  
聚乳酸是一种性能优良的完全生物降解塑料,产品价格高是其进入市场的重要障碍,通过直接缩聚法有望能合成低 成本的聚乳酸。综述了溶液缩聚及直接熔融缩聚、熔融缩聚-扩链、熔融缩聚-固相聚合合成聚乳酸的研究进展。展望了直接 缩聚法合成聚乳酸的前景。  相似文献   

11.
Blended films of poly(L ‐lactide) [ie poly(L ‐lactic acid)] (PLLA) and poly(?‐caprolactone) (PCL) without or mixed with 10 wt% poly(L ‐lactide‐co‐?‐caprolactone) (PLLA‐CL) were prepared by solution‐casting. The effects of PLLA‐CL on the morphology, phase structure, crystallization, and mechanical properties of films have been investigated using polarization optical microscopy, scanning electron microscopy, differential scanning calorimetry and tensile testing. Addition of PLLA‐CL decreased number densities of spherulites in PLLA and PCL films, and improved the observability of spherulites and the smoothness of cross‐section of the PLLA/PCL blend film. The melting temperatures (Tm) of PLLA and PCL in the films remained unchanged upon addition of PLLA‐CL, while the crystallinities of PLLA and PCL increased at PLLA contents [XPLLA = weight of PLLA/(weight of PLLA and PCL)] of 0.4–0.7 and at most of the XPLLA values, respectively. The addition of PLLA‐CL improved the tensile strength and the Young modulus of the films at XPLLA of 0.5–0.8 and of 0–0.1 and 0.5–0.8, respectively, and the elongation at break of the films at all the XPLLA values. These findings strongly suggest that PLLA‐CL was miscible with PLLA and PCL, and that the dissolved PLLA‐CL in PLLA‐rich and PCL‐rich phases increased the compatibility between these two phases. © 2003 Society of Chemical Industry  相似文献   

12.
Surface modification of poly(lactic acid) (PLA) film surface by Ar-plasma was investigated by contact angle measurements and XPS in order to answer the following two questions. (1) Could the Ar-plasma modify the PLA film surfaces? (2) What chemical reactions occurred on the film surfaces during the Ar-plasma treatment? The Ar-plasma treatment did not lead to hydrophilic modification of the PLA film surface, but to degradation reactions of the PLA film. Poor modification may be due to instability of the carbon radicals formed from C—O bond scission in the PLA chains by the Ar-plasma.  相似文献   

13.
3-Methacryloxypropyltrimethoxysilane (MEMO) was used to modify the surface of cellulose nanofibrils (CNF) to improve the interfacial adhesion between the hydrophilic CNF and the hydrophobic poly(lactic acid) (PLA). MEMO modified CNF (M-CNF) were characterized by means of Fourier transform infrared spectroscopy (FTIR), thermo gravimetric analysis (TGA), and atomic force microscope (AFM). Testing thin films with good transparency were obtained by casting the DMAC solutions of the composites onto glass plates and evaporating the solvent at 80°C. PLA/M-CNF composites were tested by tensile testing, scanning electron microscope (SEM), and AFM. The effect of MEMO and CNF on performance of PLA was investigated. The FTIR analysis successfully showed that coupling reaction has been successfully occurred and the hydroxyl groups of MEMO are strongly hydrogen bonded to that of CNF. The thermal stability of M-CNF was little decreased. The M-CNF kept their morphological integrity. The highest tensile strength of composites was obtained for PLA with 1.0% v/v MEMO and 1.0 wt % CNF. M-CNF disperse well and cross with each other in the PLA matrix. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

14.
A two-step process for lactic acid polymerization is studied: in the first step the lactic acid is condensation-polymerized to a low-molecular-weight hydroxyl-terminated prepolymer; and then the molecular weight is raised by joining prepolymer chains together using diisocyanate as the chain extender. The resulting polymer is a thermoplastic poly(ester-urethane). In this study, we synthesized three different prepolymers and used three different diisocyanates as chain extenders. All of the prepolymers were hydroxyl-terminated, and their weight average molecular weights were 5,500 g/mol, 11,900 g/mol, and 26,000 g/mol. One of the diisocyanates was aliphatic, and the other two were stiff cycloaliphatic diisocyanates. The results indicate that of the tested diisocyanates, high weight average molecular weight can be achieved only by using aliphatic 1,6-hexamethylene diisocyanate. The cycloaliphatic diisocyanates produced poly(ester-urethane)s with weight average molecular weights which were quite low, but due to the stiffness of the polymer chains the glass transition temperatures can be as high as 60°C. The 1,6-hexamethylene diisocyanate (HDI) results also indicate that the molecular weight and network formation can be controlled independently by the amount of diisocyanate used and the polymerization conditions. Only the poly(ester-urethane)s which were produced with HDI had good mechanical properties, while the stiff diisocyanates produced very brittle polymers. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 64: 865–873, 1997  相似文献   

15.
以左旋乳酸(L?LA)和乙醇酸(GA)为原料,利用一步法熔融共聚合成聚(乳酸?乙醇酸)(PLLGA)共聚物,通过差示扫描量热仪(DSC)对共聚物薄膜的结晶性能进行了表征,并利用Avrami方程对其进行了等温结晶动力学研究,通过万能拉伸试验机和压差法气体透过仪对共聚物薄膜的力学性能和气体阻隔性能进行测试。结果表明,PLLGA共聚物薄膜中GA的引入对材料结晶性能有较大影响,在GA含量为4 %(摩尔分数,下同)的PLLGA中,GA表现为成核剂作用,共聚物结晶比纯聚左旋乳酸(PLLA)薄膜快,半结晶时间减少;而在GA含量为8 %的PLLGA中,GA则表现出限制分子链运动的作用,破坏共聚物分子间的规整度,导致材料结晶性能大幅度降低,处于非晶态;随着GA含量的增加,PLLGA薄膜的拉伸强度和弹性模量逐步下降,而断裂伸长率大幅度增加,GA含量为8 %的PLLGA的断裂伸长率达到了130.1 %,是纯PLLA薄膜的21.3倍;同时,PLLGA薄膜的气体阻隔性显著增加,5 ℃时,相比于纯PLLA薄膜,GA含量为8 %的PLLGA薄膜的O2、CO2、N2透过量分别降低了47 %、41 %和39 %。  相似文献   

16.
Rubber toughened poly(lactic acid) (PLA) was prepared by blending with natural rubber (NR)‐based polymers. The blends contained 10 wt % of rubber and melt blended with a twin screw extruder. Enhancement of impact strength of PLA was primarily concernced. This study was focused on the effect of rubber polarity, rubber viscosity and molecular weight on mechanical properties of the blends. Three types of rubbers were used: NR, epoxidized natural rubber (ENR25 and ENR50), and natural rubber grafted with poly(methyl methacrylate) (NR‐g‐PMMA). Effect of viscosity and molecular weight of NR, rubber mastication with a two‐roll mill was investigated. It was found that all blends showed higher impact strength than PLA and NR became the best toughening agent. Viscosity and molecular weight of NR decreased with increasing number of mastication. Impact strength of PLA/NR blends increased after applying NR mastication due to appropriate particle size. DMTA and DSC characterization were determined as well. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

17.
Poly(lactic acid) (PLA) is a well known biodegradable thermoplastic with excellent mechanical properties that is a product from renewable resources. However, the brittleness of PLA limits its general applications. Using epoxidized soybean oil (ESO) as a novel plasticizer of poly(lactic acid), the composite blend with the twin‐screw plastic extruder at five concentrations, 3, 6, 9, 12, and 15 wt %, respectively. Compared with pure PLA, all sets of blends show certain improvement of toughness to different extents. The concentration with 9 wt % ESO increases the elongation at break about 63%. The melt flow rates of these blends with respect to different ESO ratio have been examined using a melt flow indexer. Rheological behaviors about shear viscosity and melt strength analysis are discussed based on capillary rheology measurements. The tensile strength and melt strength of the blends with 6 wt % ESO simultaneity reach the maximums; whereas the elongation at break of the blends is the second highest level. ESO exhibits positive effect on both the elongation at break and melt strength. The results indicate that the blend obtained better rheological performance and melt strength. The content of 6 wt % ESO in PLA has been considered as a better balance of performance. The results have also demonstrated that there is a certain correlation between the performance in mechanical properties and melt rheological characterization for the PLA/ESO blends.© 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

18.
聚乳酸的合成及应用   总被引:5,自引:0,他引:5  
综合分析了聚乳酸的合成方法和应用概况,重点阐述了间接开环聚合的机理,以及直接缩聚反应提高聚乳酸分子质量的最新进展概况。对聚乳酸的应用现状及应用前景进行了归纳分析,提出了聚乳酸研究的发展方向及重点应用领域。  相似文献   

19.
对可生物降解的聚乳酸类胶粘剂的种类、应用及最新的研究进展等几个方面进行了综述。特别介 绍了工业用聚乳酸类胶粘剂和医学用聚乳酸类胶粘剂的研究进展。  相似文献   

20.
Novel poly(oxyethylene)/poly(caprolactone) POE/PCL copolymers were synthesized by step growth polymerization of poly(ε-caprolactone) diols and poly(ethylene glycol) diacids using dicyclohexylcarbodiimide as coupling agent. The reaction was performed at room temperature and yielded multiblock copolymers with predetermined POE and PCL block lengths. The resulting copolymers were characterized by various analytical techniques including SEC, IR, 1H NMR, DSC and X-ray diffractometry. Data showed that the properties of these polymers can be modulated by adjusting the chain lengths of the macromonomers. In particular, one or two crystalline structures can exist within the copolymers of various crystallinities. © 1998 SCI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号