首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The generation of induced pluripotent stem cells (iPSCs) has opened up a new scientific frontier in medicine. This technology has made it possible to obtain pluripotent stem cells from individuals with genetic disorders. Because iPSCs carry the identical genetic anomalies related to those disorders, iPSCs are an ideal platform for medical research. The pathophysiological cellular phenotypes of genetically heritable heart diseases such as arrhythmias and cardiomyopathies, have been modeled on cell culture dishes using disease-specific iPSC-derived cardiomyocytes. These model systems can potentially provide new insights into disease mechanisms and drug discoveries. This review focuses on recent progress in cardiovascular disease modeling using iPSCs, and discusses problems and future perspectives concerning their use.  相似文献   

2.
3.
4.
5.
Stem cells secrete paracrine factors including extracellular vesicles (EVs) which can mediate cellular communication and support the regeneration of injured tissues. Reduced oxygen (hypoxia) as a key regulator in development and regeneration may influence cellular communication via EVs. We asked whether hypoxic conditioning during human induced pluripotent stem cell (iPSC) culture effects their EV quantity, quality or EV-based angiogenic potential. We produced iPSC-EVs from large-scale culture-conditioned media at 1%, 5% and 18% air oxygen using tangential flow filtration (TFF), with or without subsequent concentration by ultracentrifugation (TUCF). EVs were quantified by tunable resistive pulse sensing (TRPS), characterized according to MISEV2018 guidelines, and analyzed for angiogenic potential. We observed superior EV recovery by TFF compared to TUCF. We confirmed hypoxia efficacy by HIF-1α stabilization and pimonidazole hypoxyprobe. EV quantity did not differ significantly at different oxygen conditions. Significantly elevated angiogenic potential was observed for iPSC-EVs derived from 1% oxygen culture by TFF or TUCF as compared to EVs obtained at higher oxygen or the corresponding EV-depleted soluble factor fractions. Data thus demonstrate that cell-culture oxygen conditions and mode of EV preparation affect iPSC-EV function. We conclude that selecting appropriate protocols will further improve production of particularly potent iPSC-EV-based therapeutics.  相似文献   

6.
7.
Multiple sclerosis (MS) is a chronic, autoimmune, inflammatory demyelinating disorder of the central nervous system that leads to permanent neurological deficits. Current MS treatment regimens are insufficient to treat the irreversible neurological disabilities. Tremendous progress in the experimental and clinical applications of cell-based therapies has recognized stem cells as potential candidates for regenerative therapy for many neurodegenerative disorders including MS. Mesenchymal stem cells (MSC) and induced pluripotent stem cell (iPSCs) derived precursor cells can modulate the autoimmune response in the central nervous system (CNS) and promote endogenous remyelination and repair process in animal models. This review highlights studies involving the immunomodulatory and regenerative effects of mesenchymal stem cells and iPSCs derived cells in animal models, and their translation into immunomodulatory and neuroregenerative treatment strategies for MS.  相似文献   

8.
Sialidosis, caused by a genetic deficiency of the lysosomal sialidase gene (NEU1), is a systemic disease involving various tissues and organs, including the nervous system. Understanding the neurological dysfunction and pathology associated with sialidosis remains a challenge, partially due to the lack of a human model system. In this study, we have generated two types of induced pluripotent stem cells (iPSCs) with sialidosis-specific NEU1G227R and NEU1V275A/R347Q mutations (sialidosis-iPSCs), and further differentiated them into neural precursor cells (iNPCs). Characterization of NEU1G227R- and NEU1V275A/R347Q- mutated iNPCs derived from sialidosis-iPSCs (sialidosis-iNPCs) validated that sialidosis-iNPCs faithfully recapitulate key disease-specific phenotypes, including reduced NEU1 activity and impaired lysosomal and autophagic function. In particular, these cells showed defective differentiation into oligodendrocytes and astrocytes, while their neuronal differentiation was not notably affected. Importantly, we found that the phenotypic defects of sialidosis-iNPCs, such as impaired differentiation capacity, could be effectively rescued by the induction of autophagy with rapamycin. Our results demonstrate the first use of a sialidosis-iNPC model with NEU1G227R- and NEU1V275A/R347Q- mutation(s) to study the neurological defects of sialidosis, particularly those related to a defective autophagy–lysosome pathway, and may help accelerate the development of new drugs and therapeutics to combat sialidosis and other LSDs.  相似文献   

9.
10.
The small intestinal epithelium has an important role in nutrition, but also in drug absorption and metabolism. There are a few two-dimensional (2D) patient-derived induced pluripotent stem cell (iPSC)-based intestinal models enabling easy evaluation of transcellular transport. It is known that animal-derived components induce variation in the experimental outcomes. Therefore, we aimed to refine the differentiation protocol by using animal-free components. More specifically, we compared maturation of 2D-cultured iPCSs toward small intestinal epithelial cells when cultured either with or without serum, and either on Geltrex or on animal-free, recombinant laminin-based substrata. Differentiation status was characterized by qPCR, immunofluorescence imaging, and functionality assays. Our data suggest that differentiation toward definitive endoderm is more efficient without serum. Both collagen- and recombinant laminin-based coating supported differentiation of definitive endoderm, posterior definitive endoderm, and small intestinal epithelial cells from iPS-cells equally well. Small intestinal epithelial cells differentiated on recombinant laminin exhibited slightly more enterocyte specific cellular functionality than cells differentiated on Geltrex. Our data suggest that functional small intestinal epithelial cells can be generated from iPSCs in serum-free method on xeno-free substrata. This method is easily converted to an entirely xeno-free method.  相似文献   

11.
12.
Accumulating studies demonstrate the morphological and functional diversity of astrocytes, a subtype of glial cells in the central nervous system. Animal models are instrumental in advancing our understanding of the role of astrocytes in brain development and their contribution to neurological disease; however, substantial interspecies differences exist between rodent and human astrocytes, underscoring the importance of studying human astrocytes. Human pluripotent stem cell differentiation approaches allow the study of patient-specific astrocytes in the etiology of neurological disorders. In this review, we summarize the structural and functional properties of astrocytes, including the unique features of human astrocytes; demonstrate the necessity of the stem cell platform; and discuss how this platform has been applied to the research of neurodevelopmental and neuropsychiatric diseases.  相似文献   

13.
Corneal endothelial cells (CECs) do not proliferate or recover after illness or injury, resulting in decreased cell density and loss of pump/barrier function. Considering the shortage of donor cornea, it is vital to establish robust methods to generate CECs from induced pluripotent stem cells (iPSCs). We investigated the efficacy and safety of transplantation of iPSC-derived CECs into a corneal endothelial dysfunction (CED) rabbit model. iPSCs were generated from human fibroblasts. We characterized iPSCs by demonstrating the gene expression of the PSC markers OCT4, SOX2, TRA-1-60, and NANOG, teratoma formation, and differentiation into three germ layers. Differentiation of iPSCs into CECs was induced via neural crest cell (NCC) induction. CEC markers were detected using immunofluorescence and gene expression was analyzed using quantitative real-time PCR (qRT-PCR). After culturing iPSC-derived NCCs, we found the expression of zona occludens-1 (ZO-1) and Na+/K+ ATPase and a hexagonal morphology. ATP1A1, COL8A1, and AQP1 mRNA expression was higher in iPSC-derived CECs than in iPSCs and NCCs. We performed an injection of iPSC-derived CECs into the anterior chamber of a CED rabbit model and found improved levels of corneal transparency. We also found increased numbers of ZO-1- and ATP1A1-positive cells in rabbit corneas in the iPSC-derived CEC transplantation group. Usage of the coating material vitronectin (VTN) and fasudil resulted in good levels of CEC marker expression, demonstrated with Western blotting and immunocytochemistry. Combination of the VTN coating material and fasudil, instead of FNC mixture and Y27632, afforded the best results in terms of CEC differentiation’s in vitro and in vivo efficacy. Successful transplantation of CEC-like cells into a CED animal model confirms the therapeutic efficacy of these cells, demonstrated by the restoration of corneal clarity. Our results suggest that iPSC-derived CECs can be a promising cellular resource for the treatment of CED.  相似文献   

14.
Irradiated murine induced-pluripotent stem cells (iPSCs) elicit the antitumor response in vivo. However, it is unclear whether human iPSCs would elicit antitumor effects. In the present study, we investigated the capability of human iPSC lysate (iPSL)-pulsed dendritic cells (DCs) (iPSL/DCs) to induce cancer-responsive cytotoxic T lymphocytes (CTLs) in vitro. iPSCs and DCs were induced from peripheral blood mononuclear cells isolated from a human leukocyte antigen (HLA)-A33 homozygous donor. The iPSL was pulsed with immature DCs, which were then stimulated to allow full maturation. The activated DCs were co-cultured with autologous CTLs and their responses to SW48 colorectal carcinoma cells (HLA-A32/A33), T47D breast cancer cells (HLA-A33/A33), and T98G glioblastoma cells (HLA-A02/A02) were tested with enzyme-linked immunospot (ELISPOT) assays. Comprehensive gene expression analysis revealed that the established iPSCs shared numerous tumor-associated antigens with the SW48 and T47D cells. Immunofluorescent analysis demonstrated that the fluorescent-labeled iPSL was captured by the immature DCs within 2 h. iPSL/DCs induced sufficient CTL numbers in 3 weeks for ELISPOT assays, which revealed that the induced CTLs responded to SW48 and T47D cells. Human iPSL/DCs induced cancer-responsive CTLs on HLA-A33-matched cancer cells in vitro and could be a promising universal cancer vaccine for treating and preventing cancer.  相似文献   

15.
The use of primary cells in human liver therapy is limited by a lack of cells. Induced pluripotent stem cells (iPSCs) represent an alternative to primary cells as they are infinitely expandable and can be differentiated into different liver cell types. The aim of our work was to demonstrate that simian iPSCs (siPSCs) could be used as a new source of liver cells to be used as a large animal model for preclinical studies. We first differentiated siPSCs into a homogenous population of hepatoblasts (siHBs). We then separately differentiated them into hepatocytes (siHeps) and cholangiocytes (siChols) expressing respective specific markers and displaying epithelial polarity. Moreover, we showed that polarized siChols can self-organize into 3D structures. These results should facilitate the deciphering of liver development and open the way to exploring co-culture systems that could be assessed during preclinical studies, including in autologous monkey donors, for regenerative medicine purposes.  相似文献   

16.
17.
18.
Current protocols for the differentiation of human-induced pluripotent stem cells (hiPSC) into cardiomyocytes only generate a small amount of cardiac pacemaker cells. In previous work, we reported the generation of high amounts of cardiac pacemaker cells by co-culturing hiPSC with mouse visceral endoderm-like (END2) cells. However, potential medical applications of cardiac pacemaker cells generated according to this protocol, comprise an incalculable xenogeneic risk. We thus aimed to establish novel protocols maintaining the differentiation efficiency of the END2 cell-based protocol, yet eliminating the use of END2 cells. Three protocols were based on the activation and inhibition of the Wingless/Integrated (Wnt) signaling pathway, supplemented either with retinoic acid and the Wnt activator CHIR99021 (protocol B) or with the NODAL inhibitor SB431542 (protocol C) or with a combination of all three components (protocol D). An additional fourth protocol (protocol E) was used, which was originally developed by the manufacturer STEMCELL Technologies for the differentiation of hiPSC or hESC into atrial cardiomyocytes. All protocols (B, C, D, E) were compared to the END2 cell-based protocol A, serving as reference, in terms of their ability to differentiate hiPSC into cardiac pacemaker cells. Our analysis revealed that protocol E induced upregulation of 12 out of 15 cardiac pacemaker-specific genes. For comparison, reference protocol A upregulated 11, while protocols B, C and D upregulated 9, 10 and 8 cardiac pacemaker-specific genes, respectively. Cells differentiated according to protocol E displayed intense fluorescence signals of cardiac pacemaker-specific markers and showed excellent rate responsiveness to adrenergic and cholinergic stimulation. In conclusion, we characterized four novel and END2 cell-independent protocols for the differentiation of hiPSC into cardiac pacemaker cells, of which protocol E was the most efficient.  相似文献   

19.
Induced pluripotent stem cells (iPSCs) are a self-renewable pool of cells derived from an organism’s somatic cells. These can then be programmed to other cell types, including neurons. Use of iPSCs in research has been two-fold as they have been used for human disease modelling as well as for the possibility to generate new therapies. Particularly in complex human diseases, such as neurodegenerative diseases, iPSCs can give advantages over traditional animal models in that they more accurately represent the human genome. Additionally, patient-derived cells can be modified using gene editing technology and further transplanted to the brain. Glial cells have recently become important avenues of research in the field of neurodegenerative diseases, for example, in Alzheimer’s disease and Parkinson’s disease. This review focuses on using glial cells (astrocytes, microglia, and oligodendrocytes) derived from human iPSCs in order to give a better understanding of how these cells contribute to neurodegenerative disease pathology. Using glia iPSCs in in vitro cell culture, cerebral organoids, and intracranial transplantation may give us future insight into both more accurate models and disease-modifying therapies.  相似文献   

20.
Bone healing is a complex, well-organized process. Multiple factors regulate this process, including growth factors, hormones, cytokines, mechanical stimulation, and aging. One of the most important signaling pathways that affect bone healing is the Notch signaling pathway. It has a significant role in controlling the differentiation of bone mesenchymal stem cells and forming new bone. Interventions to enhance the healing of critical-sized bone defects are of great importance, and stem cell transplantations are eminent candidates for treating such defects. Understanding how Notch signaling impacts pluripotent stem cell differentiation can significantly enhance osteogenesis and improve the overall healing process upon transplantation. In Rancourt’s lab, mouse embryonic stem cells (ESC) have been successfully differentiated to the osteogenic cell lineage. This study investigates the role of Notch signaling inhibition in the osteogenic differentiation of mouse embryonic and induced pluripotent stem cells (iPS). Our data showed that Notch inhibition greatly enhanced the differentiation of both mouse embryonic and induced pluripotent stem cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号