首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Young's modulus distributions in the depth direction within injection moldings made from polystyrene have been investigated by empolying two independent techniques. Both methods show that the material close to the surface exhibits relatively high stiffness, whereas at all other depths a lower uniform stiffness exists. The depth dependency of other material characteristics, such as tan δ peaks in the dynamic mechanical thermal analysis spectra and molecular orientation, have been investigated in an attempt to correlate them with the stiffness distributions. It appears that the thermomechanical history of the different regions within the moldings, particularly the stresses acting during flow and the temperature gradients set up during cooling, are primarily responsible for the Young's modulus distributions presented here. © 1993 John Wiley & Sons, Inc.  相似文献   

2.
The recycling of inseparable polymer mixtures usually results in blends with poor mechanical properties. A mixture of PP and PS was taken as a model compound for a recyclate. The effect of adding glass fibers to a mixture of PP/PS (70/30) was studied, with special attention to long glass fiber reinforcement. Test specimens were made in three different ways: by dry blending (direct injection molding), mild compounding with a single screw extruder, and compounding with a twin screw extruder. The fiber concentration was varied from 0 to 30 wt%. The fiber lengths were determined to investigate fiber attrition. The fiber lengths in the samples were 1.09 mm for dry blending, 0.72 mm for single screw compounding, and 0.33 mm for twin screw compounding. The mechanical behavior was studied by unnotched and notched Izod impact and tensile tests. The PP/PS blend had a low fracture strain and low unnotched Izod impact strength compared with a PP homopolymer. With an increasing fiber concentration and fiber length, the modulus, tensile strength, and particularly the impact strength increased. With a 30 wt% glass fiber of the long fiber compound (dry blended), the modulus was raised by a factor of 3.5, the fracture stress by a factor of 2.5 and the unnotched Izod impact strength by a factor of 10. The product quality as judged by the scatter of the data was best for the twin screw compound and poorest for the dry blend. Compounding with a single screw extruder gave fairly constant injection molding product properties, combined with excellent mechanical properties.  相似文献   

3.
Blends of polycarbonate/polystyrene (PC/PS), polycarbonate/polypropylene (PC/PP) and ternary blends of the three components (PC/PS/PP) were studied. Extrudate swell of the molten blends increased with increasing concentrations of the minor components and leveled off at characteristic blend compositions. These compositions corresponded to the limits of compatibility as judged by the onset of brittleness in tensile tests. Both PS and PP appear to have some limited practical compatibility with PC. The change in extrudate swell behavior with concentration may be a rapid and convenient test for the effective concentration limits of partially miscible polymers.  相似文献   

4.
In this article, we investigate the effect of weld lines on the tensile mechanical properties of unmodified and copolymer modified high density polyethylene (HDPE) and polystyrene (PS) blends. The homopolymers were melt blended in the proportion of 20 wt% HDPE and 80 wt% PS using a twin screw extruder at a temperature of 200°C. The results show that the mechanical properties are generally lower when weld lines are present. The decrease of the mechanical properties is much more pronounced for the blends. The addition of small amounts of a commercial styrene/butadiene copolymer significantly improves the strength and the elongation at break of this blend. An optimum copolymer concentration was observed at 3 wt%. This value coincides with the interphase saturation concentration of the copolymer obtained from the analysis of the DMTA (dynamic mechanical and thermal) properties of the blends. The copolymer was also found to induce important changes in the morphology of the blend. The interdiffusion of the polymer fronts in the weld region was also improved by the presence of the copolymer. It is believed that these two aspects contribute to the enhanced properties obtained with copolymer modified blends in presence of weld lines. An important effect of the injection temperature on the tensile strength and the elongation at break of welded samples with copolymer modified blends was observed. The effect of mold temperature on these properties was less important mainly at low injection temperatures. Only a slight effect of these two parameters was observed for the tensile modulus in the range of mold and injection temperatures considered in this study.  相似文献   

5.
The state of dispersion of poly(ethylene-co-propylene) (PEP) rubber and high-density polyethylene (HDPE) in polypropylene (PP) blends was investigated using scanning electron microscopy to examine solvent-etched microtomed surfaces cut at low temperatures. The validity of the method was established by comparing the areal fraction of dispersed particles in micrographs with the volume fraction of PEP and HDPE in PP-rich blends. When small amounts of PEP and HDPE were added to PP, they combined to form composite PEP–HDPE particles with characteristic internal structures in a PP matrix. Changes in impact strength and flexural modulus with changes in mixing conditions and blend composition were determined and interpreted in terms of the size, composition, and internal structure of the dispersed particles. Particle growth in the melt limited the impact strength level achieved in molded articles. A simple model proposed for screening rubbers for toughening of brittle plastics successfully predicts that PEP rubber should be an excellent impact modifier for PP.  相似文献   

6.
The influence of the addition of high‐impact polystyrene (HIPS) on polypropylene (PP) photodegradation was studied with blends obtained by extrusion with and without styrene–butadiene–styrene (SBS) copolymer (10 wt % with respect to the dispersed phase). The concentrations of HIPS ranged from 10 to 30 wt %. The blends and pure materials were exposed for periods of up to 15 weeks of UV irradiation; their mechanical properties (tensile and impact), fracture surface, and melt flow indices were monitored. After 3 weeks of UV exposure, all of the materials presented mechanical properties of the same order of magnitude. However, for times of exposure greater than 3 weeks, an increasing concentration of HIPS resulted in a better photostability of PP. These results were explained in light of morphological observations. This increase of photostability was even greater when SBS was added to the blends. It was more difficult to measure the melt flow index of the binary PP/HIPS blends than that of PP for low concentrations of HIPS; this was most likely due to energy transfer between the blend domains during photodegradation. This phenomenon was not observed for the ternary blends. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

7.
PP/PS quasi‐nanoblend pellets were synthesized by diffusion and subsequent polymerization of styrene in iPP pellets via a two‐step procedure and then processed by injection molding. The PS distributions along the thickness direction of the molded bars were investigated by Micro‐FTIR, showing almost homogeneous distribution no matter whether the PS distribution in the blend pellets is homogeneous. The morphology of the molded bars was investigated by FESEM, revealing two types of particles (small spherical and bigger irregular‐shaped complex aggregates) and good interfacial adhesion between particles and matrix. The particles are mainly in nano and submicron sizes, and only few particles approach 1 μm. The mechanical properties of the molded bars were evaluated by uniaxial tensile testing, showing a significant reinforcing effect without significantly loosing ductility. The yield strength of all the blends increase 20–27% compared to neat PP and the elongations at break are all over 300%. The remarkable mechanical properties of the molded bars were correlated with their morphology. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43983.  相似文献   

8.
To increase the compatibility of polystyrene (PS) and polyolefin elastomer (POE) blends, a Lewis acid catalyst, aluminum chloride (AlCl3), was adopted to initiate the Friedel–Crafts alkylation reaction for the formation of PS‐graft‐POE copolymer. Dynamic mechanical analysis indicated that PS/POE and PS/POE/AlCl3 blends are partially miscible, and the formation of PS‐graft‐POE copolymer increased the compatibility between PS and POE. Scanning electron microscope and transmission electron microscope results showed that the domain size of the blends decreased dramatically and the size distribution became more uniform with the addition of AlCl3. Such in situ compatibilization also induced hindrance to the macromolecular chain movement, as reflected by the results of the dynamic rheological analysis. The dynamic rheological behaviors of PS/POE and PS/POE/AlCl3 blends under different temperature showed that in situ compatibilization weakened the effects of thermooxidation on PS/POE blends. Moreover, in situ compatibilization decreased the activation energy of viscous flow and reduced the influence of temperature on PS/POE blends. POLYM. ENG. SCI., 47:951–959, 2007. © 2007 Society of Plastics Engineers  相似文献   

9.
Blends of polybutene- 1 (PB-1) and polypropylene (PP) have been injection and compression molded. A synergism appears in the ultimate elongation and the tensile strength for the injection moldings. The maximum point of the synergism at the composition of 25 wt% PB-1 shifts to 50 wt% PB-1 after annealing at 145° C for 1 h. A linear relation and negative deviation from the additivity rule for these two properties are observed for the compression moldings with quick cooling and slow cooling, respectively. Thermal analysis, polarized optical microscopy, and scanning electron microscopy (SEM) are used to study the occurrence of the synergism. The mutual interference between the two components on the crystal formation and the plasticization effect of PB- 1 on PP result in the synergism. An increased phase separation probably occurs during the compression molding with slow cooling. So, the blends compression-molded with slow cooling having a higher amount of PP have brittle breaks, similar to pure PP.  相似文献   

10.
Blends of two grades of polypropylene (PP) with thermotropic copolyester (Rodrun) contents of up to 40% were obtained by direct injection molding at different processing temperatures. In the skin of the molded specimens rather long fibers were seen in blends with low‐viscosity PP, whereas sheets were found when the high‐viscosity PP was the matrix. In the core, the viscosity of the matrix played a more relevant role than the viscosity ratio on the orientation level of the dispersed Rodrun phase. The better mechanical properties of the blends with the low viscosity PP are attributed to the morphology change of the dispersed phase from sheets to fibers when the viscosity of the matrix decreased.  相似文献   

11.
Polypropylene (PP)/polystyrene (PS) blends modified with reactive monomers, such as maleic anhydride (MAH) and styrene (St), and in situ formed PP/PS blends were prepared by melting extrusion. The crystallization and melting behavior and the dynamic mechanical properties of the PP/PS blends, including the structure of the grafted copolymer, were investigated with differential scanning calorimetry, dynamic mechanical analysis, and Fourier transform infrared. The results indicated that the addition of MAH hardly influenced the crystallization temperature of PP in the blends, but the addition of MAH and St increased the crystallization temperature of PP in its blends. The blends showed no remarkable variety for the melting temperature, but the shapes of the melting peaks were influenced by the addition of the reactive monomers. In addition, a significant increase in the storage and loss moduli of all the modified PP/PS blends was observed. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 2038–2045, 2005  相似文献   

12.
A major factor that weakens the weld line in injection moldings is the V-notch structure. Though the existence of a V-notch is well known, its depth variation with molding conditions has not been detailed. The aim of this paper is to clarify the V-notch structure and its effect on the strength of general purpose polystyrene injection moldings. A dog bone type tensile specimen with a weld line was molded under several molding conditions. The surface of the weld line was partially eliminated by cutting with a milling machine to seven levels of cut depth (Dc). As a result, the weld strength increased with Dc to about 50%. The relationship between the weld strength and Dc made it possible to determine the V-notch depth, which vas defined as the “depth of the weld line.” From these results, a hypothesis is proposed that the V-notch has a structure with a fine groove on the surface and a poorly bonded inner layer. This study considered the relationships among the weld strength, the depth of the weld line, and molding conditions.  相似文献   

13.
The supermolecular structure of binary isotactic polypropylene/atactic polystyrene (iPP/PS) injection‐molded blends were studied by wide‐angle X‐ray diffraction, differential scanning calorimetry, and optical microscopy. The combination of different methods gives a possibility of analysis of relation between the phase transformation in polypropylene and crystallization parameters. Effect of compatibilization of poly(styrene‐b‐ethylene‐co‐butylene‐b‐styrene) grafted with maleic anhydride (SEBS‐g‐MA) block copolymers in the iPP/PS blends on the structure, nucleation, crystal growth, solidification, and the phase morphology was analyzed. We found that the β‐crystallization tendency of polypropylene matrix can be enhanced by adding atactic polystyrene. However, the incorporation of SEBS‐g‐MA into iPP/PS blends resulted in an important decrease in β‐content of iPP. It is evident that the presence of compatibilizing agent caused a very significant reduction of the α‐spherulite growth rates and the crystal conversion as well as increases of half‐time crystallization in comparison with the iPP/PS systems. The relation between kinetic parameters of crystallization process and polymorphic structure of iPP in blend systems has been satisfactorily explained. Moreover, a strong effect of processing parameters on the β‐phase formation was observed. The results clearly show that at a higher temperature of mold and lower injection speed, the amount of β‐phase of iPP matrix slightly decreases. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers  相似文献   

14.
A series of polypropylene (PP) alloys containing different ethylene contents have been prepared by the in situ sequential polymerization technique, using Ziegler–Natta catalyst (MgCl2/TiCl4/BMF; BMF is 9,9‐bis(methoxymethyl)fluorine, as an internal donor) without any external donor. The structure and properties of PP alloys obtained have been investigated by nuclear magnetic resonance, Fourier transform infrared spectroscopy, dynamic mechanical analysis, differential scanning calorimetry, and scanning electron microscopy (SEM). The results have suggested that PP alloys are the complex mixtures containing PP, the copolymer with long sequence ethylene chain, ethylene‐propylene rubber (EPR), and block copolymer etc. In the alloys, PP, EPR, and the copolymer with long sequence ethylene chain are partially compatible. The investigation of the mechanical properties indicates that notched Izod impact strength of PP alloy greatly increases at 16°C/?20°C in comparison with that of pure PP. The noticeable plastic deformation is observed in SEM photograph. The increase in the toughness, the mechanical strength of PP alloy decreases to a certain extent. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 4804–4810, 2006  相似文献   

15.
Injection moldings with weld lines were produced in glass reinforced polypropylene grades differing in filler content using a two‐gated hot runner injection mold. The skin‐core microstructure developed during injection molding was qualitatively analyzed by means of optical and scanning electronic microscopy techniques. The load bearing capacity of the moldings was assessed by uniaxial tensile‐impact and biaxial instrumented falling dart impact tests. Microhardness was also used to ascertain the possibility of using it as a simple nondestructive technique for characterizing glass fiber‐reinforced injection moldings. The properties were monitored at various points to evaluate their variation at the bulk and the knit region. The biaxial impact test highlights the 10‐fold reduction of the impact strength caused by the weld line. POLYM. ENG. SCI., 2009. © 2009 Society of Plastics Engineers  相似文献   

16.
The nonisothermal crystallization kinetics of polypropylene (PP), PP/polystyrene (PS), and PP/PP‐g‐PS/PS blends were investigated with differential scanning calorimetry at different cooling rates. The Jeziorny modified Avrami equation, Ozawa method, and Mo method were used to describe the crystallization kinetics for all of the samples. The kinetics parameters, including the half‐time of crystallization, the peak crystallization temperature, the Avrami exponent, the kinetic crystallization rate constant, the crystallization activation energy, and the F(T) and a parameters were determined. All of the results clearly indicate that the PP‐g‐PS copolymer accelerated the crystallization rate of the PP component in the PP/PP‐g‐PS/PS blends. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

17.
The dynamic mechanical properties of both homopolypropylene (PPVC)/Maleated Poly-propylene (PP-g-MA) and ethylene-propylene block copolymer (PPSC)/Maleated Poly-propylene (PP-g-MA) blends have been studied by using a dynamic mechanical thermal analyzer (PL-DMTA MKII) over a wide temperature range, covering a frequency zone from 0.3 to 30 Hz. With increasing content of PP-g-MA, α relaxation of both blends gradually shift to a lower temperature and the apparent activation energy ΔEα increases. In PPVC/PP-g-MA blends, β relaxation shifts to a higher temperature as the content of PP-g-MA increases from 0 to 20 wt % and then change unobviously for further varying content of PP-g-MA from 20 to 35 wt %. On the contrary, in the PPSC/PP-g-MA blends β1 relaxation, the apparent activation energy ΔEβ1 and β2 relaxation are almost unchanged with blend composition, while ΔEβ2 increases with an increase of PP-g-MA content. In the composition range studied, storage modulus É value for PPSC/PP-g-MA blends decreases progressively between β2 and α relaxation with increasing temperature, but in the region the increment for PPVC/PP-g-MA blends is independent of temperature. The flexural properties of PPVC/PP-g-MA blend show more obvious improvement on PP than one of PPSC/PP-g-MA blends. Scanning electron micrographs of fracture surfaces of the blends clearly demonstrate two-phase morphology, viz. the discrete particles homogeneously disperse in the continous phase, the main difference in the morphology between both blends is that the interaction between the particles and the continuous phase is stronger for for PPVC/PP-g-MA than for PPSC/PP-g-MA blend. By the correlation of the morphology with dynamic and mechanical properties of the blends, the variation of the relaxation behavior and mechanical properties with the componenet structure, blend composition, vibration frequency, and as well as the features observed in these variation are reasonably interpreted. © 1996 John Wiley & Sons, Inc.  相似文献   

18.
Rajkiran R. Tiwari 《Polymer》2011,52(4):1141-1154
The effect of organically modified clay on the morphology, phase stability and mechanical properties of polypropylene (PP) and polystyrene (PS) blends was studied using three molecular weight grades of PP. Maleated polypropylene was used, at a PP-g-MA/organoclay ratio of 1, to preferentially promote dispersion of the organoclay in the PP matrix. The MMT content was fixed at 3 wt% based on the PP/PP-g-MA/MMT phase and the PS content was varied from 0-100 wt% in the blend. All blends were processed using a twin screw extruder. The organoclay resides in the PP phase and at the PP/PS interface. The dispersed PS particle size is significantly reduced by the presence of MMT, with maximum decrease observed for the low viscosity PP compared to its blend without MMT. The blends with MMT did not show any change in onset of co-continuity, though MMT shifts the phase inversion composition toward lower PS contents. The phase stability of the blend was significantly improved by the presence of MMT; for blends annealed at 210 °C for 2 h the dispersed phase particle size increased by as much as 10x without MMT with little change was noted with MMT present in the blend. The tensile modulus of blends improved with the addition of MMT at low PS contents. Blends based on the highest molecular weight grade PP showed increase in the tensile yield stress up to 40 wt% PS in the absence of MMT. The tensile strength at break for blend increased slightly with MMT while elongation at break and impact strength decreased in the presence of MMT. Surface energy analysis model was used to predict the orientation and equilibrium position of the clay platelet at the interface based on the surface energies.  相似文献   

19.
Summary The glass transition behavior of ternary blends of polypropylene (PP), polystyrene (PS) and styrene-ethylene-propylene-styrene block copolymer (SEPS) was investigated. The blends were prepared by an internal mixer, and their dynamic mechanical properties and morphology were measured. The blends showed phase inversion at around 75wt% PS composition. The glass transition temperature (Tg) of the PP phase shifted to lower temperature as the PS contents were increased in PP/PS binary blends, probably due to the mismatch of thermal expansion coefficients between two components. As the SEPS copolymer contents were increased, the Tg's of the PP phase in the blends increased. In particular, the large increase in Tg of the PP phase was observed in the PP/PS (25/75) blends where the phase inversion takes place. Received: 2 February 1998/Revised version: 24 March 1998/Accepted: 13 April 1998  相似文献   

20.
Shengwei Deng  Ying Hu 《Polymer》2011,52(24):5681-5694
The mechanical behavior of binary polymer blends polystyrene/polypropylene were studied by a continuous mesoscopic simulation method. The dynamic density functional theory approach embodied in MesoDyn method was adopted to obtain the meso-structures of polymer blends. The output of MesoDyn serves as the input of a micromechanical lattice spring model (LSM), which consists of a three-dimensional network of springs. Mechanical properties, such as young’s modulus and stress distribution can be obtained through applying strain in LSM. Subsequently, a stress-related probabilistic method was applied in LSM to study the fracturing process of materials. The fracture positions were shown in detail which have close relationship with the meso-structures. Due to the significance of interface which has a notable influence on the global mechanical properties of immiscible blends, we proposed a new method to define the stiffness in the interfacial area to study the global stiffness (young’s modulus) of materials. The results show a good agreement with the existing experiments. Besides, we varied the minimum fracture stress (related to toughness) of the interface to investigate the strength of polymer blends. A graphic representation was shown in this work, it indicates that the system with continuous interface perpendicular to the applied strain are more likely to exhibit catastrophic failure. The methods developed in this work provide important tools to predict the mechanical properties of real polymer blends.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号