首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Montmorillonite was organically modified with distearyldimethylammonium chloride. This organically modified clay (OMON) and poly (ϵ-caprolactone) (PCL) were solvent-cast blended with chloroform, and the structure and properties of the resulting PCL-clay blends were investigated. From isothermal crystallization experiments, it was found that a small amount of OMON in the blend accelerated the crystallization of PCL, whereas a large amount of the organophilic clay delayed it. From small-and wide-angle X-ray scattering measurements, it was found that the silicate layers forming the clay could not be dispersed individually in the PCL blends. In other words, the clay seemed to exist as the tactoids consisting of some silicate layers. These tactoids formed a remarkable geometric structure; that is, their surface planes lay almost parallel to the blend film surface. Furthermore, the tactoids were stacked with insertion of PCL lamellae in the film-thickness direction. Preferred orientation of the PCL crystallites was induced by the presence of the clay. During the drawing process of the blends, fibrillation took place with formation of planelike voids developed on the plane parallel to the film surface. From dynamic viscoelastic measurements, it was shown that intercalation of PCL chains into the layered silicates did not take place in the blends prepared by the solvent-cast method used in this work. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 64: 2211–2220, 1997  相似文献   

2.
Poly(vinyl acetate) (PVAc)/poly(ethylene oxide) (PEO) blends were prepared by casting from either benzene or chloroform. The solvent effects on the crystallization behavior and thermodynamic properties of the blends were studied by the differential scanning calorimeter (DSC). Two grades of PEO with different molecular weights (PEO200 with Mw = 200,000 g/mol and PEO2 with Mn = 2000 g/mol) were used in this work. The thermal analysis revealed that the blends cast from either benzene or chloroform were miscible in the molten state. The crystallization of PEO in the benzene-cast blends was more easily suppressed than it was in the chloroform-cast blends. Furthermore, the benzene-cast blends showed a greater negative value of Flory-Huggins interaction parameter than those cast from chloroform in the PVAc/PEO200 poly-blend system. It was supposed that the benzene-cast blends had more homogeneous morphology. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 64: 411–421, 1997  相似文献   

3.
The melting and crystallization behavior and phase morphology of poly(3-hydroxybutyrate) (PHB) and poly(DL-lactide)-co-poly(ethylene glycol) (PELA) blends were studied by DSC, SEM, and polarizing optical microscopy. The melting temperatures of PHB in the blends showed a slight shift, and the melting enthalpy of the blends decreased linearly with the increase of PELA content. The glass transition temperatures of PHB/PELA (60/40), (40/60), and (20/80) blends were found at about 30°C, close to that of the pure PELA component, during DSC heating runs for the original samples and samples after cooling from the melt at a rate of 20°C/min. After a DSC cooling run at a rate of 100°C/min, the blends showed glass transitions in the range of 10–30°C. Uniform distribution of two phases in the blends was observed by SEM. The crystallization of PHB in the blends from both the melt and the glassy state was affected by the PELA component. When crystallized from the melt during the DSC nonisothermal crystallization run at a rate of 20°C/min, the temperatures of crystallization decreased with the increase of PELA content. Compared with pure PHB, the cold crystallization peaks of PHB in the blends shifted to higher temperatures. Well-defined spherulites of PHB were found in both pure PHB and the blends with PHB content of 80 or 60%. The growth of spherulites of PHB in the blends was affected significantly by 60% PELA content. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 65: 1849–1856, 1997  相似文献   

4.
Various poly(p-phenylene alkylene dicarboxylates) (PPADs) were synthesized and their crystallization behavior was examined as functions of the length and the odd/even numbers of carbon atoms in the aliphatic component. PPADs with longer aliphatic units of even-numbered carbon atoms were found to crystallize faster than do those of other cases. The results are compared with the crystallization behavior of conventional poly(alkylene terephthalate)s (PATs), e.g., poly(ethylene terephthalate) (PET) and poly(butylene terephthalate) (PBT), which have the same chemical composition as the corresponding PPAD but the reversed direction of the ester group. The effects of this structural difference on the melting temperature and the crystallization kinetics are also discussed. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 66: 1575–1582, 1997  相似文献   

5.
Development of polymeric blends has become very important for polymer industries because they have been shown to be successful and versatile alternatives to obtain new polymers. In this work binary blends formed by poly(vinylpyrrolidone) (PVP) and poly(ethylene oxide) (PEO) were studied by solution and solid‐state NMR to determine their physical interaction, homogeneity, and compatibility for use as membranes to separate water/alcohol. The NMR results allowed us to acquire information on the microstructure and molecular dynamic behavior of polymer blends. From the NMR solution it was possible to evaluate the microstructure: PVP presented a preferential syndiotactic distribution sequence and PEO presented two regions, one crystalline and the other amorphous. Considering the solid‐state NMR results it was possible to evaluate the molecular dynamics and all binary blends, showing that PEO behaves as a plasticizer; some intermolecular interaction was also observed. An important point was to evaluate the microstructure of the carbonyl PVP using cross polarization/magic‐angle spinning (CP/MAS) and CP/MAS/dipolar decoupling that was not observed before. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 2820–2823, 2002  相似文献   

6.
Nitrile-butadiene rubber/poly(propylene carbonate) (NBR-PPC) elastomer was studied as a coupling agent of the blends of poly(vinyl chloride) (PVC) with poly(propylene carbonate) (PPC). It greatly improved the PVC/PPC system mechanical properties that were dependent on the amount and composition of the coupling agent. When the coupling agent consisted of a 70/30 ratio of NBR/PPC (in which NBR had 34% nitrile content) and 2.5 phr of benzoyl peroxide (BPO) initiator and underwent a prevulcanization, the blends of PVC/PPC displayed excellent mechanical properties by adding 8 phr of the coupling agent. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 63: 1107–1111, 1997  相似文献   

7.
Isotactic, atactic, and syndiotactic poly(methyl methacrylate) (PMMA) were mixed with poly(vinyl phenol) (PVPh) separately in tetrahydrofuran to make three polymer blend systems. Differential scanning calorimetry (DSC) and Fourier transform infrared (FTIR) spectroscopy were used to study the miscibility of these blends. Isotactic PMMA was found to be more miscible with PVPh than atactic or syndiotactic PMMA. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 66: 1773–1780, 1997  相似文献   

8.
Ternary blends containing polypropylene (PP), poly(1-butene) (PB), and hydrogenated oligo(cyclopentadiene) (HOCP) have been studied using microscopic calorimetric and dynamic mechanical techniques, with no phase separation having been observed in the melt for all the considered compositions. The morphology of the crystallized blends and spherulite growth rate of the PP component appeared to be influenced by the blend composition. The presence of one or two Tgs revealed by dynamic mechanical thermal analysis (DMTA) on quenched or crystallized blends has suggested that demixing phenomena can occur during the crystallization of the components. The blend composition has been found to affect the overall crystallization rate and the equilibrium melting temperature of the PP component. A parameter describing the enthalpic interactions between the PP component and the diluent fraction evidenced that the addition of HOCP to PP and PB increases the stability of the ternary blend. The above results suggest that the three components can form a miscible blend in the melt. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 65:1659–1665, 1997  相似文献   

9.
Blends of poly(3‐hydroxy butyrate‐co‐3‐hydroxy valerate) (PHBV) and poly(ethylene oxide) (PEO) were prepared by casting from chloroform solutions. Crystallization kinetics and melting behavior of blends have been studied by differential scanning calorimetry and optical polarizing microscopy. Experimental results reveal that the constituents are miscible in the amorphous state. They form separated crystal structures in the solid state. Crystallization behavior of the blends was studied under isothermal and nonisothermal conditions. Owing to the large difference in melting temperatures, the constituents crystallize consecutively in blends; however, the process is affected by the respective second component. PHBV crystallizes from the amorphous mixture of the constituents, at temperatures where the PEO remains in the molten state. PEO, on the other hand, is surrounded during its crystallization process by crystalline PHBV regions. The degree of crystallinity in the blends stays constant for PHBV and decreases slightly for PEO, with ascending PHBV content. The rate of crystallization of PHBV decreases in blends as compared to the neat polymer. The opposite behavior is observed for PEO. Nonisothermal crystallization is discussed in terms of a quasi‐isothermal approach. Qualitatively, the results show the same tendencies as under isothermal conditions. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 2776–2783, 2006  相似文献   

10.
This paper reports on the interpolymer complex formation and polymer blends between poly(monoethyl itaconate) (PMEI) and poly(N-vinyl-2-pyrrolidone) (PVP). The formation of the interpolymer complex was found to depend upon the solvent medium. Stoichiometry of the complexes prepared from methanol solutions, as calculated from elemental analysis, is close to 1 : 1. Specific interactions of PMEI/PVP complexes and blends of these polymers have been characterized by FTIR. Strong hydrogen bonding for complexes and blends has been found. A calorimetric study of the complexes and blends has been performed over a wide temperature range.  相似文献   

11.
D.J. Walsh  C.K. Sham 《Polymer》1984,25(7):1023-1027
The in situ polymerization of n-butyl acrylate with poly(vinyl chloride) has been studied. Butyl acrylate was polymerized using a peroxydicarbonate initiator and a thiol chain transfer agent in the presence of poly (vinyl chloride) beads suspended in water. The products were examined, after pressing into sheets, for optical clarity and by dynamic mechanical analysis. It was found that if 10% butyl acrylate was peesent in the mixture homogeneous blends were formed but if 15% or more butyl acrylate was present two phase mixtures were formed. If homogeneous blends prepared as above were reswollen in butyl acrylate, and the latter then polymerized, homogeneous blends containing more poly(butyl acrylate) could be prepared. The interaction parameters between both poly(vinyl chloride' and poly(butyl acrylate) and butyl acrylate were estimated by inverse gas chromatography. Using these and an estimate of the polymer/polymer interaction parameter the three component phase diagram could be qualitatively explained.  相似文献   

12.
The calorimetric properties and dynamic mechanical behaviour of pure poly(ethylene oxide) (PEO) and its blends with poly(N-vinyl carbazole) (PNVK) have been examined as a function of composition in the range 50-100% PEO. Thermomechanical measurements indicate the presence of a phase separation in this blend. Using the Hoffman-Weeks plot no equilibrium melting point depression was found in any of the blends studied. Some kinetic interfacial effects were detected in the crystallization processes. For all blend compositions, the Avrami exponent is close to that obtained for pure PEO. The DMTA and DTA results suggest an incompatibility in this system.  相似文献   

13.
The crystallization behavior and morphology of poly(ϵ-caprolactone) (PCL)/poly(vinyl butyral) (PVB) blends containing carbon black (CB) were studied as functions of PVB and CB content. The presence of CB had no influence on the primary nucleation of PCL crystals or the spherulitic growth rate. They were only influenced by the blend ratio of PVB. The growth rates of spherulites were unchanged throughout the crystallization process, regardless of the CB content. The results indicate that the concentration of PCL at the front of growing spherulite remains constant during crystallization. The distribution of CB in the spherulites was observed using atomic force microscopy to explain these results. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 64: 797–802, 1997  相似文献   

14.
The melting behavior of poly(butylene succinate) (PBSU) in miscible blends with poly(ethylene oxide) (PEO), which is a newly found polymer blends of two crystalline polymers by our group, has been investigated by conventional differential scanning calorimetry (DSC). It was found that PBSU showed double melting behavior after isothermal crystallization from the melt under certain crystallization conditions, which was explained by the model of melting, recrystallization and remelting. The influence of the blend composition, crystallization temperature and scanning rate on the melting behavior of PBSU has been studied extensively. With increasing any of the PEO composition, crystallization temperature and scanning rate, the recrystallization of PBSU was inhibited. Furthermore, temperature modulated differential scanning calorimetry (TMDSC) was also employed in this work to investigate the melting behavior of PBSU in PBSU/PEO blends due to its advantage in the separation of exotherms (including crystallization and recrystallization) from reversible meltings (including the melting of the crystals originally existed prior to the DSC scan and the melting of the crystals formed through the recrystallization during the DSC scan). The TMDSC experiments gave a direct evidence of this melting, recrystallization and remelting model to explain the multiple melting behavior of PBSU in PBSU/PEO blends.  相似文献   

15.
The miscibility of high molecular weight poly( -lactide) PLLA with high molecular weight poly(ethylene oxide) PEO was studied by differential scanning calorimetry. All blends containing up to 50 weight% PEO showed single glass transition temperatures. The PLLA and PEO melting temperatures were found to decrease on blending, the equilibrium melting points of PLLA in these blends decreased with increasing PEO fractions. These results suggest the miscibility of PLLA and PEO in the amorphous phase. Mechanical properties of blends with up to 20 weight% PEO were also studied. Changes in mechanical properties were small in blends with less than 10 weight% PEO. At higher PEO concentrations the materials became very flexible, an elongation at break of more than 500% was observed for a blend with 20 weight% PEO. Hydrolytic degradation up to 30 days of the blends showed only a small variation in tensile strength at PEO concentrations less than 15 weight%. As a result of the increased hydrophilicity, however, the blends swelled. Mass loss upon degradation was attributed to partial dissolution of the PEO fraction and to an increased rate of degradation of the PLLA fraction. Significant differences in degradation behaviour between PLLA/PEO blends and (PLLA/PEO/PLLA) triblock-copolymers were observed.  相似文献   

16.
The miscibility of high molecular weight poly(ethylene oxide) blends with poly(3‐hydroxypropionic acid) and poly(3‐hydroxybutyric acid) (P(3HB)) has been investigated by differential scanning calorimetry (DSC), dynamic mechanical thermal analysis (DMTA) and high‐resolution solid state 13C nuclear magnetic resonance (NMR). The DSC thermal behaviour of the blends revealed that the binary blends of poly(ethylene oxide)/poly(3‐hydroxypropionic acid) (OP blends) were miscible over the whole composition range while the miscibility of poly(ethylene oxide)/poly(3‐hydroxybutyric acid) blends (OB blends) was dependent on the blend composition. OB blends were found to be partly miscible at the middle P(3HB) contents (25 %, 50 %) and miscible at other P(3HB) contents (10 %, 75 % and 90 %). Single‐phase behaviour for OP blends and phase separation behaviour for OB blends were observed from DMTA. The results from NMR spectroscopy revealed that the two components in the OP50 blend were intimately mixed on a scale of about 35 nm, while the domain sizes in the OB blend with a P(3HB) content of 50 % were larger than about 32 nm. © 2000 Society of Chemical Industry  相似文献   

17.
Summary: This paper reports an FT‐IR study of blends and complexes of poly(mono n‐alkyl itaconates) with poly(N,N‐dimethylacrylamide) (PDMA) and poly(ethyloxazoline) (PEOX). Strong hydrogen bonding has been found and both polybases have shown similar acceptor strengths. The extent of the interassociation has been estimated by spectral curve fitting of the polybase carbonyl band. The influences of the solvent medium and alkyl side group length of the poly(mono n‐alkyl itaconate) on the interassociation extents have been discussed. Blend and complex interassociation behavior has been compared too. Results show that media influences the interassociation degree in systems with PDMA, but has negligible influence in systems with PEOX. Moreover, the interassociation degree in blends with PEOX does not depend on the length of the poly(monoalkyl itaconate) side group, while an interassociating ability loss is observed in blends with PDMA as the side group size of the polyacid increases. This different behavior is attributed to the greater interspacing between vicinal carbonyl groups in PEOX. Anyway, this band shows conformational sensitivity and reflects the conformational changes that are forced to adopt as the steric hindrances present in the medium (due to the bulky side groups of the polyacids) increase.

Auto scaled carbonyl stretching region for PMBuI/PEOX complexes.  相似文献   


18.
The miscibility of poly(3‐hydroxyvalerate) (PHV)/poly(p‐vinyl phenol) (PVPh) blends has been studied by differential scanning calorimetry (DSC) and Fourier transform infrared (FTIR) spectroscopy. The blends are miscible as shown by the existence of a single glass transition temperature (Tg) and a depression of the equilibrium melting temperature of PHV in each blend. The interaction parameter was found to be −1.2 based on the analysis of melting point depression data using the Nishi–Wang equation. Hydrogen‐bonding interactions exist between the carbonyl groups of PHV and the hydroxyl groups of PVPh as evidenced by FTIR spectra. The crystallization of PHV is significantly hindered by the addition of PVPh. The addition of 50 wt % PVPh can totally prevent PHV from cold crystallization. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 383–388, 1999  相似文献   

19.
The crystallization kinetics of binary blends of poly(ethylene oxide) and poly(methyl methacrylate) were investigated. The isothermal spherulitic growth rates were measured by means of a polarized light microscope. The temperature and composition dependence on the growth rates have been analysed. The temperature range studied was from 44° to 58°C. The introduction of poly(methyl methacrylate) into poly(ethylene oxide) resulted in a reduction of the spherulitic growth rate as the proportion of poly(methyl methacrylate) was increased from zero to 40% by weight. Results have been analysed using the theoretical equations of Boon and Azcue for the growth rate of polymer-diluent mixtures. The experimental results are in good agreement with this equation. The temperature coefficient is negative as is the case in the crystallization of bulk homopolymers.  相似文献   

20.
Rheological properties of the blends of poly(aryl ether ether ketone) (PEEK) with liquid crystalline poly(aryl ether ketone) containing substituted 3‐trifluoromethylbenzene side group (F‐PAEK), prepared by solution precipitation, have been investigated by rheometer. Dynamic rheological behaviors of the blends under the oscillatory shear mode are strongly dependent on blend composition. For PEEK‐rich blends, the systems show flow curves similar to those of the pure PEEK, i.e., dynamic storage modulus G′ is larger than dynamic loss modulus G″, showing the feature of elastic fluid. For F‐PAEK‐rich systems, the rheological behavior of the blends has a resemblance to pure F‐PAEK, i.e., G″ is greater than G′, showing the characteristic of viscous fluid. When the PEEK content is in the range of 50–70%, the blends exhibit an unusual rheological behavior, which is the result of phase inversion between the two components. Moreover, as a whole, the complex viscosity values of the blends are between those of two pure polymers and decrease with increasing F‐PAEK content. However, at 50% weight fraction of PEEK, the viscosity‐composition curves exhibit a local maximum, which may be mainly attributed to the phase separation of two components at such a composition. The changes of G′ and G″ with composition show a trend similar to that of complex viscosity. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 4040–4044, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号