首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用种子乳液聚合技术在聚丁二烯 ( PB)乳胶粒上接枝共聚苯乙烯 ( St)和丙烯腈 ( AN) ,合成了一系列 PB-g-SAN共聚物 ( ABS)。将这些共聚物用丙酮溶解并在超速离心机上将 PB-g-SAN和未接枝在 PB上的游离 SAN分离 ,计算出 SAN在 PB上的接枝率和接枝效率。通过改变共聚单体的组成和加料时间 ,研究了接枝率和接枝效率的变化。结果表明 SAN的接枝率随着 PB含量的增加而降低 ,在共聚单体中增加引发剂 ( CHP)和分子量调节剂 ( TD-DM)的含量 ,SAN在 PB上的接枝率和接枝效率表现出了下降的趋势 ,而共聚单体的配比 St/ AN和加料时间对接枝率和接枝效率的影响不大。  相似文献   

2.
以悬浮法实施二元乙丙橡胶(EPM)与单体苯乙烯(St)和丙烯腈(AN)的接枝共聚反应。合成了EPM—g—SAN,用其与SAN树脂共混制备了高抗冲塑料乙丙橡胶与苯乙烯及丙烯腈的三元共聚物(AES)。研究了AN/St—AN和EPM/St-AN的配料比对接枝反应体系的单体转化率、接枝率和接枝效率及AES缺口冲击强度的影响。用FTIR对EPM—g—SAN所含g—SAN(包括接枝链和非接枝共聚物)的组成进行了定量分析。结果表明,当AN质量分数为35%、EPM质量分数为60%,接枝反应体系的单体转化率、接枝率和接枝效率分别为92%、45%和27.6%。在此条件下合成的EPM—g—SAN对SAN树脂的增韧效率最高,用其制备的AES的悬臂梁缺口冲击强度达到53.2kJ/m^2。FTIR定量分析表明,在EPM—g—SAN的g—SAN中AN单元的平均组成比小于AN单体的配料比,而AN单元在接枝链SAN中的组成比小于在非接枝共聚物SAN中的组成比;当g—SAN所含接枝链的组成与非接枝共聚物的组成相等时,其EPM—g—SAN对SAN树脂有更高的增韧效率。  相似文献   

3.
王硕  刘哲  盛光  吕洁  郭阳  李刚 《弹性体》2010,20(1):46-52
采用种子乳液聚合技术在聚丁二烯(PB)乳胶粒子上接枝共聚苯乙烯(St)、α-甲基苯乙烯(α—MSt)和丙烯腈(AN)单体,合成了一系列不同AN结合量的ABS和α—MABS接枝共聚物。将其与聚氯乙烯(PVC)树脂熔融共混制得了PVC/AtkS共混物,利用扫描电镜(SEM)、透射电镜(TEM)和动态力学分析仪(DMA)对共混物的相容性和相结构进行了表征。结果发现,在PVC/ABS共混体系中,尽管改变接枝SAN共聚物的AN结合量,PVC和ABS接枝共聚物均为不相容体系;在ABS接枝共聚物中引入α-MSt后,当接枝SAN共聚物的AN结合量为18.7%~23.6%(质量分数)时,共混物在室温以上只存在1个tanδ峰,共混物成为相容体系,当AN结合量达到32.1%(质量分数)时,共混物成为部分相容体系。共混物的相区尺寸明显地依赖于接枝SAN共聚物中的AN结合量,与动态力学性能结果表现出良好的吻合。  相似文献   

4.
H.A. Stretz  D.R. Paul 《Polymer》2006,47(24):8123-8136
For polymer/organoclay nanocomposites formed by melt processing, interactions between the polymer, montmorillonite surface, and surfactant determine any thermodynamic driving force for dispersion of the clay in the polymer. Interactions between poly(styrene-co-acrylonitrile) (SAN) and a single organoclay were probed by varying the SAN copolymer composition. Sample preparation was accomplished by melt processing on a microcompounder followed by injection molding. The level of mechanical reinforcement was observed to increase with acrylonitrile content. Digital analyses of TEM photomicrographs of core samples suggest an optimum in the aspect ratio of the particles at ∼38 wt% acrylonitrile; montmorillonite particles are much longer and thicker for the PS-based composites indicting poor exfoliation compared to the SAN-based composites. The melt viscosity of the SAN copolymers used in this work increased with AN content; experiments showed that varying melt viscosity independent of AN content can account for some improvement in reinforcement.  相似文献   

5.
Block copolymers of polycarbonate (PC) and polymethylmethacrylate (PMMA), PCb‐PMMA, were examined as compatibilizers for blends of PC with styrene‐co‐acrylonitrile (SAN) copolymer. PC‐b‐PMMA was added to blends of PC with SAN containing various amounts of AN. The average diameter of the dispersed particles was measured with an image analyzer, and the interfacial properties of the blends were analyzed with an imbedded fiber retraction (IFR) test and an asymmetric double cantilever beam fracture test. The average particle size and interfacial tension of the PC/SAN blends reached a minimum value when the SAN copolymer contained about 24 wt% AN. A maximum in the adhesion energy was also observed at the same AN content. Interfacial tension and particle size were further reduced by adding PC‐b‐PMMA to the PC/SAN blends. Fracture toughness of the blends was also improved by enhancing the interfacial adhesion by the addition of PC‐b‐PMMA. The addition of PC‐b‐PMMA copolymer was more effective at improving the interfacial properties of PC/SAN blends than was varying the AN content of the SAN copolymers. The interfacial properties of the PC/SAN blends were optimized by adding a block copolymer and using an SAN copolymer that had minimum interaction energy with PC.  相似文献   

6.
Tetramethylpolycarbonate‐block‐poly(styrene‐co‐acrylonitrile) (TMPC‐block‐SAN) block copolymers containing various amounts of acrylonitrile (AN) were examined as compatibilizers for blends of polycarbonate (PC) with poly(styrene‐co‐acrylonitrile) (SAN) copolymers. To explore the effects of block copolymers on the compatibility of PC/SAN blends, the average diameter of the dispersed particles in the blend was measured with an image analyzer, and the interfacial properties of the blends were analyzed with an imbedded fibre retraction technique and an asymmetric double‐cantilever beam fracture test. Reduction in the average diameter of dispersed particles and effective improvement in the interfacial properties was observed by adding TMPC‐block‐SAN copolymers as compatibilizer of PC/SAN blend. TMPC‐block‐SAN copolymer was effective as a compatibilizer when the difference in the AN content of SAN copolymer and that of SAN block in TMPC‐block‐SAN copolymer was less than about 10 wt%. Copyright © 2004 Society of Chemical Industry  相似文献   

7.
This paper describes the development of a new crosslinked poly(methyl methacrylate-acrylic acid) copolymer for potential applications in bone implants. This copolymer, comprising hydrophobic and hydrophilic components, has been designed to provide small amounts of controllable swelling strains at saturation when exposed to an aqueous saline environment. The volume fraction of the hydrophobic methyl methacrylate monomer to the hydrophilic acrylic acid monomer strongly influenced the swelling behavior of the copolymer. Two different cross-linking agents, allyl methacrylate and diethylene glycol dimethacrylate, were evaluated for their effectiveness in cross-linking and limiting the saturated swelling levels. The influences of the amounts of cross-linking agents and other processing parameters on the swelling behavior of the copolymer were studied using differential scanning calorimetry measurements, solubility tests, and swelling measurements in saline solutions. These measurements provided a good understanding of the structure of the copolymer, the effectiveness of the cross-linkers, the swelling mechanisms in this system, and the factors that strongly affect the swelling weight gain levels in this copolymer. © 1997 John Wiley & Sons, Inc.  相似文献   

8.
The effect of the molecular weight and acrylonitrile (AN) content of the styrene–acrylonitrile copolymer (SAN) on the morphology, mechanical properties, and rheological properties of acrylonitrile–butadiene–styrene terpolymer/poly(methyl methacrylate) (ABS)/PMMA (60/40 by weight) blends were studied. When the AN content of matrix SAN (32%) was close to that of graft SAN (30%) AN, rubber particles existed separately. However, with matrix SAN having 35% AN, rubber particles showed tendency to agglomerate each other. With increasing molecular weight of matrix SAN, impact strength, ultimate elongation, and abrasion resistance of the blend generally increased. Yield strength increased with molecular weight at a constant AN content of matrix SAN, and it decreased with the decrease of AN content in spite of the increasing molecular weight of SAN. Melt properties, rather than the morphological and mechanical properties, were more sensitive to the AN content, rather than the molecular weight of matrix SAN. © 1994 John Wiley & Sons, Inc.  相似文献   

9.
The miscibility of polycarbonate (PC) with styrene-co-acrylonitrile random copolymer (SAN) has been systematically investigated as functions of acrylonitrile content and shear flow. Various AN-contents ranged from 11 to 74 wt% and different simple shear flow values up to 90 s−1 have been used to explore the effect of both material and proceeding parameters on the miscibility of PC and SAN blends. The finest phase dispersion of the SAN particles was observed at AN=25 wt% for PC/SAN=70/30 blends under the same processing condition using scanning electron microscope (SEM). The obtained morphologies indicated that PC and SAN could form a partial miscibility blend and the maximum miscibility occurred at AN=25 wt%. This observation was supported by considering the shifts in the glass processes of the two rich phases of the blend using the dynamical mechanical analysis (DMA) measurements. The optimum interaction of the two components at AN=25 wt% calculated from ellipsometric technique was found to be the only responsible parameter for the high miscibility of the blend. The viscoelastic properties of the pure polymer components were found to play a minor role in the obtained morphologies. The effect of simple shear flow on the morphology of PC/SAN-25=70/30 blend has been also investigated using a special shear apparatus of parallel plate geometry. It has been found that the dispersed phase of SAN was elongated and broken-up in the direction of flow with weaker contrast at high shear rates. The shear rate was found to enhance the miscibility of SAN (dispersed phase) in the PC matrix to a great extent as seen in the weak contrast of the two phases observed by transmission electron microscope (TEM).  相似文献   

10.
用(乙烯/丙烯/二烯)共聚物(EPDM)与甲基丙烯酸甲酯(MMA)、丙烯腈(AN)进行溶液接枝共聚合成了(EPDM/MMA/AN)接枝共聚物(EPDM-g-MAN),并将其与(苯乙烯/丙烯腈)共聚物(SAN)共混制得高抗冲耐老化黄变性能优异的EPDM-g-MAN/SAN共混物(AEMS).研究了AN用量对不同EPDM-g-MAN接枝体系单体转化率(CR)、接枝率(GR)、接枝效率(GE)及AEMS缺口冲击强度的影响.结果发现,随着AN用量的增加,EPDM-g-MAN的CR逐渐下降;GR、GE在AN质量分数为5%时出现最大值;AEMS的缺口冲击强度均在AN质量分数为10%时出现最大值,为61.0 kJ/m2;EPDM相以条状形态构成的近连续相结构存在,径向尺寸较小的EPDM条形结构能诱发SAN基体剪切屈服,径向尺寸较大的EPDM条形结构仅能诱发基体空穴化.  相似文献   

11.
陈明  王硕  胡慧林  刘哲  宋振彪 《弹性体》2012,22(4):48-51
采用种子乳液聚合方法合成PB-g-SAN(ABS)接枝共聚物,与苯乙烯丙烯腈共聚物(SAN)熔融共混制备ABS树脂。主要研究了在聚丁二烯橡胶粒子(PB)上接枝苯乙烯(St)和丙烯腈(AN)单体制备ABS接枝共聚物过程中,单体的加料时间和预溶胀过程的控制对单体的接枝效果、ABS橡胶粒子的形态以及最终ABS树脂性能的影响。实验结果表明:与一次投料工艺相比,在接枝过程中连续进料方式有助于提高接枝效率,且单体连续加料时间适当缩短有助于提高ABS树脂的冲击强度;单体预溶胀过程会降低接枝效率,并且容易使St单体进入PB相形成内包容结构,接枝过程中保持预溶胀合适的单体量有助于提高ABS树脂的冲击强度。  相似文献   

12.
The miscibility was investigated in blends of poly(methyl methacrylate) (PMMA) and styrene‐acrylonitrile (SAN) copolymers with different acrylonitrile (AN) contents. The 50/50 wt % blends of PMMA with the SAN copolymers containing 5, 35, and 50 wt % of AN were immiscible, while the blend with copolymer containing 25 wt % of AN was miscible. The morphologies of PMMA/SAN blends were characterized by virtue of scanning electron microscopy and transmission electron microscopy. It was found that the miscibility of PMMA/SAN blends were in consistence with the morphologies observed. Moreover, the different morphologies in blends of PMMA and SAN were also observed. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

13.
A. Adedeji  A. M. Jamieson 《Polymer》1993,34(24):5038-5047
The influence of enthalpic interactions on interfacial adhesion between immiscible polymer matrices and reinforcing block copolymer segments has been studied using the transmission electron microscopic (TEM) methodology of Creton et al. We examined the behaviour of four statistical styrene-acrylonitrile (SAN) copolymers, each having different acrylonitrile (AN) content, blended with polystyrene (PS) as the minor component, and reinforced by three poly(methyl methacrylate-b-styrene) (PMMA-b-PS) block copolymers of differing molar masses, viz. 20000, 65000 and 680000 g mol−1. These observations were compared with similar experiments on poly(methyl methacrylate) (PMMA) blended with PS and reinforced by PMMA-b-PS. Emulsification was observed with all three PMMA-b-PS copolymers. Crazes were formed in the SAN matrices and a statistical evaluation of interfacial failures was performed on the discrete PS domains that lay within the crazes. For the two block copolymers of higher molar mass, optimal reinforcement of the interfaces was observed independent of the SAN composition. With the 20000 block copolymer, however, the pattern of the interfacial failure depended strongly on the SAN composition. Specifically, it was observed that the fraction of the discrete particles that suffered interfacial failure, and led to the creation of large voids in the crazes in these blends, increased with increased AN content of the SAN matrix. Thus, we found that the fraction of discrete PS particles that produce large voids in crazes of blends containing SAN33 is always higher than in blends containing SAN15, when reinforced with the 20000 PMMA-b-PS. We infer that the critical molar mass required of a mechanically reinforcing copolymer depends on the short-range (attractive and repulsive) interactions between the blend components in the interfacial region. The TEM method could not, however, distinguish between reinforced and neat PMMA/PS blends, all of which showed strong adhesion. This is attributed to the comparatively diffuse interface in the PMMA/PS system, a consequence of the relatively weak repulsion between these two polymers.  相似文献   

14.
The phase behavior of binary mixtures of copolymers containing varying amounts of styrene and acrylonitrile (SAN) with a large range of aliphatic polyesters was examined. Miscibility was observed over a limited range of AN contents of the SANs, for each polyester, while similarly for each SAN, miscibility was only observed over a limited range of polyester molecular structures. Thermodynamic interaction parameters for the miscible blends were obtained by analysis of the depression of the polyester melting point. A binary interaction model was used to correlate the data and six group interaction parameters were deduced by subdividing the polyester and SAN copolymer repeating units in three different ways. It is concluded that there is a strong repulsion between the segmental units within the polyesters and within the SAN copolymers, which is an important factor in the observed phase behavior.  相似文献   

15.
偏氯乙烯/丙烯腈/苯乙烯悬浮共聚合动力学   总被引:1,自引:0,他引:1  
本文研究了偏氯乙烯(VDC)/丙烯腈(AN)/苯乙烯(St)三元悬浮共聚合体系的聚合机理、共聚速率、非聚物组成及其特性粘度的影响因素。实验表明随着投料配比的改变,可分成四个不同聚合机理区域。St对VDC/AN/St三元悬浮共聚有缓聚作用。VDC三元悬浮共聚速率可用半经验模型,dC/dt=αC^β「Ⅰ」o^γexp(-γkdt)描述,由实验得到模型参数γ值为2.24,模型参数α、β是聚合温度与引发剂浓度的函数。VDC-AN-St三元悬浮共聚物存在着较宽的VDC组成分布,并受到单体AN水溶性的影响,经AN动态相平衡校正后,可预测VDC三元共聚物组成。VDC-AN-St共聚物的特性粘度随着转化率的升高而增大。在相同引发剂用量下,高转化率VDC-AN-St共聚物特性粘度的对数与温度的倒数成线性关系。  相似文献   

16.
A mathematical model for swollen emulsion polymerization of styrene was derived in this study. The experimental data were obtained using two different swelling agents: cetyl alcohol and lauryl alcohol. In the studied system, potassium persulfate and sodium dodecyl sulfate were used as initiator and emulsifier, respectively. The variation of total monomer conversion with the polymerization time obtained with different swelling agent-emulsifier combinations and data from SEM photographs of the final latexes were evaluated for estimation of the model parameters. In the mathematical model, it was assumed that the polymerization takes place according to first-order kinetics, within the forming latex particles in the presence of monomer diffusion from the monomer droplets to the forming latex particles. The kinetic rate constants and the variation of effective diffusion coefficient of monomer with the polymerization time were estimated using model expressions. Relative rate factor-Thiele modulus diagrams were derived for swollen emulsion polymerization system.  相似文献   

17.
For the purpose of promoting mechanical properties of bisphenol-A polycarbonate (PC) reinforced by rigid organic styrene–acrylonitrile copolymer (SAN) particles, styrene/acrylonitrile/glycidyl methacrylate terpolymer (SAG) was synthesized and applied as compatibilizer for PC/SAN blends. It is found that the phase morphology of PC/SAN/SAG blends is closely related with their mechanical properties. Large continuously distributed SAN phase or spherical dispersed SAN particles with average diameter over 2 μm tend to trigger premature tensile failure of blends due to stress concentration. The incorporation of SAG can simultaneously reinforce and toughen PC/SAN blends by controlling the size and distribution of the dispersed SAN particles. For the blends with fixed PC/SAN ratio, the elongation at break and fracture energy are markedly improved when SAN domain size is reduced by adding appropriate amount of SAG. Typically, for blends with a PC/SAN ratio of 75/25, adding 3 wt% SAG will cause the average diameter of SAN particles to reduce from 2.35 ± 1.20 to 0.74 ± 0.25 μm, meanwhile up to 95% increment in elongation at break and 115% increment in fracture energy is achieved.  相似文献   

18.
Summary A mathematical model for microemulsion copolymerization systems has been developed and compared with experimental conversion vs. time data for the vinyl acetate/butyl acrylate system. The main features of the model include micellar and homogeneous nucleation and thermodynamic equilibrium for the calculation of monomer partitioning between the phases. Simulations were made using this model with reported values for the kinetic parameters except for propagation rate constants in the water phase and radical capture by particles and micelles coefficients which were estimated. Simulations using the model showed good agreement with experimental data.  相似文献   

19.
采用种子乳液聚合技术在聚丁二烯乳胶粒上接枝共聚苯乙烯和丙烯腈 ,通过改变共聚单体和聚丁二烯的投料比合成了一系列PB g SAN共聚物 ,将这些共聚物与SAN树脂进行熔融共混制得了ABS树脂。研究了投料比对SAN在PB上的接枝率、SAN的分子量和ABS树脂的形态结构及性能的影响。结果发现 ,随着投料比的增加 ,SAN在PB上的接枝率及SAN的分子量提高 ,接枝率和SAN分子量共同作用影响着ABS树脂的冲击韧性和加工性能。形态结构研究结果表明 ,投料比不仅影响着橡胶粒子在SAN基体中的分散程度 ,而且影响着橡胶粒子的内部结构 ,随着投料比的增加 ,橡胶粒子在基体中的分散程度提高 ,其内部的包容结构增多并导致了橡胶粒子粒径的增大。  相似文献   

20.
The phase behaviour of the binary copolymer systems SMA-SAN and SAN-SAN can be described well using the copolymer repulsion model. However, the phase behaviour of the ternary system consisting of SMA-SAN(1)-SAN(2) with SAN(1) and SAN(2) having different chemical compositions is not known. In order to reveal this, the composition of the blends, the composition of the SMA (ranging from 22 to 34 wt% MA) at constant SAN compositions (26, 34 and 28, 32 wt% AN), the molar mass of the SMA (Mw=3.5 and 110 kg/mol) as well as the temperature (25 and 230°C) were varied. The number of phases was studied using differential scanning calorimetry (DSC) and a critical evaluation of the predicted and observed glass transition temperatures based on the Fox equation. The binodals and spinodals were calculated using the Flory-Huggins approach. From a comparison of predicted and observed miscibility, it is concluded that this ternary system can be described using the aforementioned model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号