首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The relationships between the morphologies and the permeability characteristics as dialysis membrane of polyether-segmented nylon 610 (PE-Ny610) have been investigated. PE-Ny610 used are poly(propylene oxide) (PPO)-segmented nylon 610 containing 25 wt % PPO (PPO-Ny610) and poly(ethylene oxide) (PEO)-segmented nylon 610 containing 15 wt % PEO (PEO-Ny610). The morphologies in the cross section of the membranes exhibit the cellular porous structures due to liquid-liquid phase separation. On the other hand, the structures of the surfaces are mainly composed of the crystalline spherulite due to liquid-solid phase separation. These morphologies are little affected by the composition ratio of the coagulant, calcium chloride/methanol/water mixture. PEO-Ny610 membranes have shown superior membrane performances to the PPO-Ny610 membrane. The effect of PEO content in PEO-Ny610 on the adhesion of platelet onto the PEO-Ny610 film surface was investigated and it is concluded that PEO-Ny610 having > 10 wt % PEO shows a good nonthrombogenicity equal to PPO-Ny610. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 65:1713–1721, 1997  相似文献   

2.
Dialysis membrane was prepared by a phase inversion method using a new polyether-segmented nylon which dissolves in common organic solvents such as dimethylsulfoxide. The polyether-segmented nylon contained poly(ethylene oxide) block and nylon block (random copolyamide: Ny69/M10) prepared by sebacic acid, azelaic acid, m-xylenediamine, and hexamethylenediamine. The morphologies and permeability characteristics of the membranes were investigated. It was shown by scanning electron microscope observation that the membrane had a fingerlike structure when dimethylsulfoxide was used as a polymer solvent, and a spongelike structure when an additive such as calcium chloride was added to the polymer solution. The high permeability for the solutes such as urea and vitamin B12 were observed in comparison with the polyether-segmented Ny610 membranes prepared by a phase inversion method. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 65:1731–1737, 1997  相似文献   

3.
The biocompatibility of poly(propylene oxide)-segmented nylon610 (PPO-Ny610), poly(ethylene oxide)-segmented nylon610 (PEO-Ny610), poly(ethylene oxide)-segmented nylonM10 (PEO-NyM10), and poly(ethylene oxide)-segmented nylon69/M10 (PEO-Ny69/M10) hollow fibers were investigated in terms of the transient leukopenia by the extracorporeal circulation in a rabbit. PPO-Ny610 and PEO-Ny610 hollow fibers showed that the minimum leukocyte counts during the circulations were > 80% against the initial count of leukocyte. These results indicate that these polymers have good blood compatibility. In PEO-NyM10 and PEO-Ny69/M10, the remarkable decreases of the leukocyte count were observed and the minimum counts were in the range of 45–50%. From the evaluation results of homo nylons (Ny610 and NyM10) hollow fibers, the low blood compatibilities observed in PEO-NyM10 and PEO-Ny69/M10 are not attributed to the chemical structure of the nylon blocks. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 67:1253–1257, 1998  相似文献   

4.
In order to apply a blood-compatible polymer to hemodialysis membrane, a new polyether-segmented nylon which dissolved in common organic solvents was designed. The basic polyether-segmented nylon was synthesized by melt polycondensation from sebacic acid, m-xylenediamine, and α,ω-bisaminopropyl-poly(ethylene oxide). To improve the solubility, azelaic acid and hexamethylenediamine were copolycondensed with the basic copolymer. The solubility was correlated with the heat of fusion (ΔHm) of the copolymer. When ΔHm is < 30 mJ/mg, the polymer is soluble in dimethylsulfoxide and makes a stable solution. The nonthrombogenicity was investigated in the viewpoint of adhesion of platelet onto the copolymer surface. It is made clear that the surface of the block copolymer, having > 10 wt % of poly(ethylene oxide), suppresses the adhesion of platelet, and the composition of the nylon block has no effect on the adhesion of platelet. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 65:1723–1729, 1997  相似文献   

5.
The relationships of the surface morphologies to the surface chemical compositions in poly(ethylene oxide)‐segmented nylon (PEO–Ny) membranes prepared by the phase‐inversion method were studied using scanning electron microscopy (SEM), electron spectroscopy for chemical analysis (ESCA), and static secondary ion mass spectrometry (SSIMS). The PEO–Ny's used were high semicrystalline PEO‐segmented polyiminosebacoyliminohexamethylene (PEO–Ny610), low semicrystalline PEO‐segmented poly(iminosebacoylimino‐m‐xylylene) (PEO–NyM10), and amorphous PEO‐ segmented poly(iminoisophthaloyliminomethylene‐1,3‐cyclohexylenemethylene) (PEO–NyBI). SEM observation showed that the surfaces of the PEO–Ny610 and PEO–NyM10 membranes were composed of crystalline spherulite and that the PEO–NyBI membrane surface had a nodular structure. ESCA analysis exhibited the enrichment of the PEO segment at the surfaces of the PEO–Ny610 and PEO–NyM10 membranes. On the other hand, the enrichment of the Ny segment was observed in the case of the PEO–NyBI membrane. SSIMS analysis revealed that the outermost surfaces of the PEO–Ny membranes except the PEO–NyBI membrane were almost covered with the PEO segment. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 517–528, 2000  相似文献   

6.
A series of poly(vinyl alcohol) membranes were modifed by radiation-induced graft copolymerization with acrylic acid and methacrylic acid monomers. These grafted poly(vinyl alcohol) membranes were then tested for their separation and permeability characteristics in vacuum permeation and dialysis experiments. The permselectivity of the membranes toward methanol and water was studied on a vacuum permeation apparatus at 30, 40, and 50°C. The permeation process was found to be a temperature-activated process. The logarithm of the permeation rate varied linearly with the reciprocal of the absolute temperature. The permeability of the grafted membranes was found to increase with the degree of grafting, with no appreciable selectivity toward water in binary mixtures. The acrylic acid-grafted membranes generally showed greater improvement in permeability than the methacylic-grafted membranes. The permeability of the grafted membranes toward methanol, sodium chloride, urea, creatinine, and uric acid was studied in a dialyzer. In all cases, the grafted membranes showed an improved permeability toward these solutes over the commercial poly(vinyl alcohol) membranes. The dialysis results were then compared with those obtained for dialysis-grade cellophane membranes. For the case of sodium chloride, urea, and methanol, the permeability of the grafted membranes was comparable to that of cellophane. A comparison of commercial and grafted poly(vinyl alcohol) membranes in their permeability toward ionic solutes exhibited somewhat anomalous behavior in that the permeability of the commercial membranes was higher than that of the grafted membranes. This related to the ionic nature of the modified membrane. The permeability coefficients determined in the dialysis experiments were found to be directly related to the degree of hydration of the grafted membrane. This behavior was attributed to changes in the size and shape of voids within the membrane structure.  相似文献   

7.
New composite proton exchange membrane was prepared by mixing a 1‐methyl‐2‐pyrrolidone (NMP) solution of sulfonated poly(2,6‐dimethyl‐1,4‐phenylene oxide) (SPPO) in sodium form and brominated poly(2,6‐dimethyl‐1,4‐phenylene oxide) (BPPO) for hydrophilic‐hydrophobic balance, then casting the solution as a thin film, evaporating the solvent, and treating the membrane with aqueous hydrochloric acid. The resulting membranes were subsequently characterized using FTIR‐ATR, SEM‐EDXA, and TGA instrumentation as well as measurements of basic properties such as ion exchange capacity (IEC), water uptake, proton conductivity, methanol permeability, and single cell performance. Water uptake, IEC, proton conductivity, and methanol permeability all increased with a corresponding increase of SPPO content. By properly compromising the conductivity and methanol permeability, membranes with 60–80 wt % SPPO content exhibited comparable proton conductivity to that of Nafion® 117, with only half the methanol permeability, thereby demonstrating higher single cell performance. The membranes developed in this study could thus be a suitable candidate electrolyte for proton exchange membrane fuel cells (PEMFCs). © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

8.
The effect of ionomer structure on gas transport properties of membranes was investigated. For this purpose physical and transport properties of poly(phenylene oxide) (PPO) and its sulfonated derivative (SPPO) were compared. SPPO has a more rigid structure and a lower free volume, which determines low gas permeability and high permselectivity. Gas transport properties of two types of SPPO—PPO composite membranes with top layers prepared from solutions in methanol or N,N-dimethylacet-amide (DMA) were investigated. The use of SPPO solution in DMA leads to the formation of membranes with higher gas permeability. It was shown that DMA is a morphologically active solvent for SPPO. Strong complexes of SPPO with DMA are formed in solution and retained upon transition into the condensed state. The plasticizing effect of DMA on SPPO determines the high gas permeability of the membranes and is in agreement with their mechanical properties. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 66: 1439–1443, 1997  相似文献   

9.
The reverse osmosis, ultrafiltration, and dialysis properties of nylon 4 membranes to separations of sodium chloride, urea, a series of ethylene glycols and other compounds in the aqueous phase were investigated. The nylon 4 membranes were prepared from a formic acid solution with and without organic or inorganic additives. The effects of polymer concentration, amount of additives, casting time, and temperature on the membrane performance in terms of salt separation and product rate were investigated. The tensile properties of the nylon 4 membranes in both the dry and wet states were determined. It was found that the highest salt separation of a 0.1% sodium chloride solution did not exceed 53.3%. However, these membranes showed some intersting dialysis properties which were comparable to those of commercial cellophane and cellulose acetate membranes.  相似文献   

10.
Three imide‐containing poly(amic acids) were synthesized and used for homogeneous and composite membrane preparation. The transport properties of composite membranes consisting of an imide‐containing poly(amic acid) top layer on an asymmetric porous poly(phenylene oxide) support were studied in the pervaporation of aqueous solutions of organic liquids (ethanol, isopropanol, acetone, and ethylacetate) and organic/organic mixtures (ethylacetate/ethanol, methanol/cyclohexane). For most of the aqueous/organic mixtures, the composite membranes exhibited dehydration properties. Dilute aqueous solutions of ethylacetate were an exception. In these solutions, the composite membranes exhibited organophilic properties, high permeability, and selectivity with respect to ethylacetate. In the pervaporation of methanol/cyclohexane mixtures, methanol was removed with very high selectivity. To account for specific features of pervaporation on the composite membranes, the sorption and transport properties of homogeneous membranes prepared from polymers comprising the composite membrane [imide‐containing poly(amic acids) and poly(phenylene oxide)] were studied. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 2361–2368, 2003  相似文献   

11.
A membrane precursor was prepared by the copolymerization of p-styrenesulfonyl chloride and divinylbenzene in the presence of a poly(vinyl chloride) supported cloth. The surface of the membrane was treated with various amines, and then the sulfonyl chloride groups in the internal part of the membrane were hydrolyzed with an aqueous sodium hydroxide solution in organic methanol or acetone solvent. Hydrolysis conditions were examined for the introduction of the sulfonic acid groups. The membrane modified by ethylenediamine exhibited slightly bipolar properties during the electrodialysis of seawater. Surface-modified membranes using tetraethylenepentamine exhibited excellent monovalent cation permselectivity, low membrane electric resistance, and long performance durability during the electrodialysis of seawater.  相似文献   

12.
Membranes used for hemodialysis should have good mechanical strength to withstand the maximum transmembrane pressure. Although crosslinked poly(vinyl alcohol) membrane has superior permeability to solutes, its wet breaking strength is low. Mechanical strength, dry and wet, of membranes made from crosslinked blendmers of poly(vinyl alcohol) and polyacrylonitrile was investigated. The possibilities of these membranes for the application as dialysis membranes were evaluated by estimating its solute permeabilities. The optimum membrane selected shows permeability and mechanical properties comparable with the commercial regenerated cellulose membrane. Polyelectrolyte grafting made the membrane more blood-compatible. © 1995 John Wiley & Sons, Inc.  相似文献   

13.
A crosslinked epoxy [4,4′‐diglycidyl‐(3,3′,5,5′‐tetramethylbiphenyl) epoxy resin (TMBP)], cured by phenol novolac (PN), was introduced into a sulfonated poly(ether ether ketone) (SPEEK) membrane (ion‐exchange capacity = 2.0 mequiv/g) with a casting‐solution, evaporation, and heating crosslinking method to improve the mechanical properties, dimensional stability, water retention, and methanol resistance. By Fourier transform infrared analysis, the interactions between the sulfonic acid groups and hydroxyl groups in the blend membranes were confirmed. The microstructure and morphology of the blend membranes were investigated with atomic force microscopy. As expected, the blend membranes showed excellent mechanical properties, good thermal properties (thermal stability above 200°C), lower swelling ratios (1.4% at 25°C and 7.0% at 80°C), higher water retention (water diffusion coefficient = 9.8 × 10?6 cm2/s), and a lower methanol permeability coefficient (3.6 × 10?8 cm2/s) than the pristine SPEEK membrane. Although the proton conductivity of the blend membranes decreased, a higher selectivity (ratio of the proton conductivity to the methanol permeability) was obtained than that of the pristine SPEEK membrane. The results showed that the SPEEK/TMBP/PN blend membranes could have potential use as proton‐exchange membranes in direct methanol fuel cells. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

14.
王文娟  陈新兵 《精细化工》2014,31(6):686-689,694
以有序介孔碳(CMK)为掺杂剂,在乙醇中超声分散后与磺化聚酰亚胺的间甲酚溶液直接混合,然后采用流延法制备掺杂质子交换膜。环镜扫描电子显微镜表征发现CMK在膜中分散均匀。通过吸水率、溶剂吸收率、尺寸变化、电导率、甲醇透过率、力学性能及稳定性等测试发现掺杂膜虽然电导率有所下降,但其吸水率下降了15%~26%;抗溶胀性提高了15%~30%;热稳定性提高了约20~30℃;抗氧化性增大了1.3~1.5倍;水稳定性和力学性能也显著提高。  相似文献   

15.
Two types of membranes, the sulfonated PEEK-WC (poly(oxa-p-phenylene-3,3-phthalido-p-phenylene-oxyphenylene)(SPWC) and Krytox-Si-Nafion® (KSiN) composite membranes are proposed for DMFC applications.The properties based on water uptake, ion exchange capacity, proton conductivity, gas permeability, thermal stabilityand methanol crossover are summarized. The comparative studies on SPWC and Nafion® 117 membranes clarify us that the amorphous sulfonated PEEK-WC polymer shows thermal and mechanical stability with less methanol flux and gas permeability. The membrane also exhibits the increase in water uptake, ion exchange capacity and proton conductivity as sulfuric acid doping agent concentration was increased. The KSiN is unique in term of its miscible hybrid structure of silica particles modified with Nafion® structured Krytox 157 FSL chain (KSi) andNafion®. Based on the KSiN membranes with different KSi content, it was found that when KSi content increased, the reduction of gas permeability, methanol crossover and thermal stability are improved. The composite membrane performs the proton conductivity in the wide range of high temperature (60–130°C).  相似文献   

16.
Reverse-osmosis membrane-grade aromatic polyamides have been synthesized by reacting 3,5-diaminobenzoic acid separately with three different acylchlorides, viz. isophthaloyl chloride, terephthaloyl chloride, and 4,4′-diphenyldicarboxylic acid chloride. Using these polyamides, asymmetric membranes were developed and characterized for various physical parameters, such as Staverman coefficient, membrane potential, and percent salt rejection using sodium chloride solution under high pressure. The effects of pressure, feed concentration, and feed flow rate have been studied on membrane transport parameters, viz. pure water permeability constant, product rate, solute transport parameter, and separation factor. The effects of annealing temperature and solvent evaporation time on the performance of the membranes were also studied. The analysis of the reverse-osmosis data revealed that the membranes prepared from the 3,5-diaminobenzoic acid and 4,4′-diphenyldicarboxylic acid chloride are superior to the membranes prepared from other polymeric materials. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 66: 643–653, 1997  相似文献   

17.
Blend membranes based on high conductive sulfonated poly(1,4‐phenylene ether‐ether‐sulfone) (SPEES) and poly(vinylidene fluoride) (PVDF) having excellent chemical stability were prepared and characterized for direct methanol fuel cells. The effects of PVDF content on the proton conductivity, water uptake, and chemical stability of SPEES/PVDF blend membranes were investigated. The morphology, miscibility, thermal, and mechanical properties of blend membranes were also studied by means of scanning electron microscopy (SEM), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and dynamic mechanical analysis (DMA) measurements. The blend membrane containing 90 wt.% SPEES (degree of sulfonation – DS = 72%) and 10 wt.% PVDF (Mw = 180,000) exhibits optimum properties among various SPEES72/PVDF membranes. Addition of PVDF enhanced resistance of the SPEES membrane against peroxide radicals and methanol significantly without deterioration of its proton conductivity. It's proton conductivity at 80 °C and 100% relative humidity is higher than Nafion 115 while it's methanol permeability is only half of that of Nafion 115 at 80 °C. The direct methanol fuel cell performance of the SPEES membranes was better than that of Nafion 115 membrane at 80 °C.  相似文献   

18.
The effects of silica and silane modified silica fillers on the pervaporation properties of poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) dense membranes have been studied. Crystallinity, thermal and mechanical properties of unfilled and filled PPO membranes with silica and silane modified silica nanoparticles were investigated. The surface energy together with the solubility parameters of the membranes and the nanoparticles were determined. Pervaporation separation of methanol/methyl tert butyl ether (MTBE) mixtures over the entire range of concentration were carried out using both filled and unfilled membranes. The results are discussed in terms of the solubility and the diffusivity of each liquid component in the membranes. Flory-Huggins theory was used to predict the sorption methanol selectivity. Compared to the unfilled PPO membrane, the filled PPO membranes exhibit higher methanol selectivity and lower permeability. For methanol concentration in liquid feed mixture lower than 50 wt%, methanol selectivity of the filled PPO membranes with silane modified silica is better than that of the silica filled and unfilled PPO membranes.  相似文献   

19.
The permeation characteristics and the burst strength of nylon 12 membranes treated with heat in various solutions such as aqueous solutions of formic acid, formic acid/formalin, and sodium hydroxide/ formalin were investigated under various conditions. They were significantly influenced by the treatment solution, temperature and time, and the concentration of acid and alkali in the treatment solution. In particular, nylon 12 membranes treated with formic acid/formalin remarkably improved the permeation characteristics and the burst strength. These phenomena were discussed from the standpoint of the effective pore size and pore number in the membrane, and the form and aggregation of polymer molecules forming the membrane.  相似文献   

20.
The purpose of this research is to prepare high solute permeability membranes for hemodialysis by plasma depositing hydrophilic monomers onto chemically treated or O2 plasma etched Nylon 4 substrate. The factors that affect the performances of membranes, such as deposition conditions and chemical or plasma etching conditions, were studied. The monomers used in this study were 1-vinyl-2-pyrrolidone (VP), 2-Hydroxyethyl methacrylate (HEMA), and Methyl methacrylate (MMA). The permeabilities of NaCl, urea, vitamin B12, and albumin were measured, as were the water content, hydration, diffusivity, partition coefficient, and protein adsorption ratio of fibrinogen to albumin by membrane surface of plasma deposited membranes. The permeabilities of NaCl, urea, vitamin B12, and albumin of HEMA 5 w-1 h plasma deposited onto chemical treated Nylon 4 membranes were 2.896 ± 0.192, 3.301 ± 0.325, 0.010 ± 0.007, and 0.000 x 10?5 cm2/min, respectively. The mole ratio of adsorbed fibrinogen to adsorbed albumin (F/A) is 0.26 ± 0.05, which is much lower than that of the pure Nylon 4 membrane (0.94 ± 0.06) and the Gambro® membrane (0.90 ± 0.15). The HEMA deposited membrane possesses the highest feasibility as hemodialysis material among those plasma deposited membranes considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号