共查询到20条相似文献,搜索用时 78 毫秒
1.
The domain morphology and mechanical properties of fibers spun from blends of a thermotropic liquid crystalline polymer, Vectra A-900, and poly(ethylene terephthalate) (PET) have been studied across the entire composition range. The PET phase was removed by etching to reveal fibrillar LCP domains in the blends of all compositions. The 0.5μm fibril appeared to be the basic structural entity of the LCP domains. A primary effect of composition was the change from discontinuous fibrils when the composition was 35 and 60% by weight LCP to continuous fibrils when the composition was 85 and 96% LCP. This transition had major ramifications on the mechanical properties: the modulus increased abruptly between 60 and 85% LCP, and a change in the fracture mode from brittle fracture to a splitting mode was accompanied by an increase in fracture strength. Different models were required to describe the mechanical properties of the discontinuous and continuous fibril morphologies. Analytic models for short aligned fibers of Nielsen, and Kelly and Tyson were applicable when the LCP fibrils were discontinuous, while modulus and strength of blend fibers with continuous LCP fibrils were discribed by the rule of mixtures. 相似文献
2.
To augment the concept of in situ composites as alternatives to fiber-reinforced composites, polyblends of a thermotropic liquid crystalline polymer (LCP) and poly(ethylene terephthalate) (PET) were prepared. Fiber-spinning of the blends was performed on a piston-driven plastorneter. Blends of LCP and a low-intrinsic-viscosity PET resin showed poor mechanical performance, which was attributed to their processing behavior. Blends of LCP and a high intrinsicviscosity PET manifested an almost additive behavior with regard to tensile modulus and strength. Elongation of the blends, however, displayed a radical decline, which is reminiscent of fiber-reinforced composites. Heat treatment of the blend fibers modestly increased the tensile properties of the LCP-rich compositions. Blend fibers from PET-rich compositions exhibit a moderate decline in tensile properties owing to thermal relaxation of PET. The data demonstrate that in situ composites or blends of thermotropic LCPs and isotropic polymers present challenging alternatives to fiber-reinforced composite systems because of their ease of processing. 相似文献
3.
Mechanical properties of the ternary blends of poly(ethylene terephthalate) (PET), polycarbonate (PC), and thermotropic liquid crystalline (TCLP, Vectra A950) were investigated. The ternary blends were prepared by varying the amount TLCP but fixing the ration of PET and PC. The fiber fallen freely through the capillary die had the highest initial modulus (1.46 GPa)/tensile strength (73 MPa) when 10% of TLCP was added. Above this TLCP content, however initial modulus and tensile strength decreased. The scanning electron microscope (SEM) micrographs of the TLCP phase which was extracted by dissolving PET/PC matrix from the blend showed the fine fibrils formed at 5 and 10% of TLCP, while the aggregated TLCP phases at 20 and 30% of TLCP. It was suggested that the decrease of the mechanical properties of the resulting blend was caused by the aggregation of TLCP phase above 10% of TLCP. A high draw ratio gave a rise to the formation of highly oriented fibrils of TLCP phase in the PET/PC matrix and the improvement of mechanical properties of the ternary blend. 相似文献
4.
Polymer blends of poly(ethylene terephthalate) (PET) and a liquid crystalline polymer (LCP) [random copolymers of the poly(ethylene telephthalate) and poly (hydroxybenzoic acid)] were prepared by using a twin-screw extruder. Strands were extruded from a capillary die. Extruded stands were stretched in an oven at 80°C. DSC and SEM were employed to investigate the structural properties of the strands. Mechanical properties of the strands were evaluated by a sonic propagation method. DSC investigation suggested that LCP phases may act as a nucleating agent of PET and the orientation-induced crystallization of PET was accelerated by the presence of LCP. An SEM micrograph shows that the LCP phases formed finely spherical domains with a diameter of 0.1–1.0 μm in the PET matrix and large parts of LCP spherical droplets were deformed to fibrils. In the case of unstretched strands, sonic moduli increased linearly with increasing LCP content, because PET was reinforced by LCP fibrils as in the case of glass fiber-reinforced PET. The degree of crys-tallization of PET also increased with increasing LCP contents. In the case of stretched strands, sonic moduli increased with an increasing stretching ratio due to the orientation-induced crystallization of PET. A larger increasing of the sonic modulus was shown in LCP-containing strands in the regions of a low stretching ratio (1–5), since the orientation-induced crystallization of PET was accelerated by the presence of LCP phases. © 1996 John Wiley & Sons. Inc. 相似文献
5.
BACKGROUND: The melt blending of thermotropic liquid crystal polymers (TLCPs) using conventional thermoplastics has attracted much attention due to the improved strength and tensile modulus of the resulting polymer composites. Moreover, because of their low melt viscosity, the addition of small amounts of TLCPs can reduce the melt viscosity of polymer blends, thereby enhancing the processability. RESULTS: In this study, TLCP/poly(ethylene 2,6‐naphthalate) (PEN) blend fibers were prepared by melt blending and melt spinning to improve fiber performance and processability. The relation between the structure and the mechanical properties of TLCP/PEN blend fibers and the effect of annealing on these properties were also investigated. The mechanical properties of the blend fibers were improved by increasing the spinning speed and by adding TLCP. These properties of the blend fibers were also improved by annealing. The tensile strength of TLCP5/PEN spun at a spinning speed of 2.0 km h?1 and annealed at 235 °C for 2 h was about three times higher than that of TLCP5/PEN spun at a spinning speed of 0.5 km h?1. The double melting behavior observed in the annealed fibers depended on the annealing temperature and time. CONCLUSION: The improvement of the mechanical properties of the blend fibers with spinning speed, by adding TLCP and by annealing was attributed to an increase in crystallite size, an increase in the degree of crystallinity and an improvement in crystal perfection. The double melting behavior was influenced by the distribution in lamella thickness that occurred because of a melt‐reorganization process during differential scanning calorimetry scans. Copyright © 2007 Society of Chemical Industry 相似文献
6.
The isothermal and dynamic crystallization behaviors of polyethylene terephthalate (PET) blended with three types of liquid crystal polymers, i.e., PHB60–PET40, HBA73–HNA27, [(PHB60–PET40)–(HBA73–HNA27) 50 : 50], have been studied using differential scanning calorimetry (DSC). The kinetics were calculated using the slope of the crystallization versus time plot, the time for 50% reduced crystallinity, the time to attain maximum rate of crystallization, and the Avrami equation. All the liquid crystalline polymer reinforcements with 10 wt % added accelerated the rate of crystallization of PET; however, the order of the acceleration effect among the liquid crystalline polymers could not be defined from the isothermal crystallization kinetics. The order of the effect for liquid crystalline polymer on the crystallization of PET is as follows: (PHB60–PET40)–(HBA73–HNA27) (50 : 50); HBA73–HNA27; PHB60–PET40: This order forms the dynamic scan of the DSC measurements. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 67:1383–1392, 1998 相似文献
7.
Boo Young Shin Sang Hee Jang In Jae Chung Bong Shik Kim 《Polymer Engineering and Science》1992,32(1):73-79
Two thermotropic liquid crystalline polyesters (TLCPs) with long flexible spacer groups in the main chain were prepared by melt polymerization: one was a homopolymer with only decane groups (LCPHO) and the other was a copolymer with hexane or decane groups (LCPCO) between mesogen units. These polyesters were blended with a matrix polymer of poly(ethylene terephthalate) (PET). Scanning electron microscopy (SEM) revealed the excellent interfacial adhesion between polyester and PET, and the large aspect ratio of polyester microfibrils in the blend fiber made by extruding and drawing the blend through a die. The aspect ratio was estimated by using the modified Halpin-Tsai equation. The fiber with LCPHO showed more extensive fibril formation than that with LCPCO. 相似文献
8.
Summary A thermotropic liquid crystal copolyester (CHQ/BP/TA/IA; 40/10/40/10) (LCP), and melt blends of poly (ethylene terephthalate) (PET) with LCP have been studied for thermal transition and crystallization behaviour. The LCP has a mesophase transition (KM) in the temperature range of 295–315°C. The endothermic peak showing mesophase to Isotropic (MI) transition is observed around 420°C. These transitions are supported by hot stage polarizing microscopy. In blends of PET/LCP, the mesomorphic transition is observed at temperature around 314°C, along with the melting transition of PET around 274°C. The dynamic calorimetric measurements reveal that the two polymers are at least partially miscible. 相似文献
9.
This work was concerned with the injection molding of poly(ethylene terephthalate) (PET) reinforced with pregenerated thermotropic liquid crystalline polymer (TLCP) fibrils, where the TLCP had a higher melt processing temperature than PET. These composites, referred to as pregenerated microcomposites, were produced using a two step processing scheme. First, a novel dual extrusion process was used to spin strands of PET reinforced with nearly continuous TLCP fibrils. Second, these strands were subsequently chopped into pellets and injection molded below the melt processing temperature of the TLCP but above that of PET. This allowed the high modulus TLCP fibrils generated in the spinning step to be retained in the injection molded samples. TLCP concentration and strand draw ratio were varied in the composite strands to determine how they affected mechanical properties. It was shown that the best properties were obtained using strands containing 50 weight percent TLCP with draw ratios greater than 50, which were diluted to the desired loading level with a low viscosity injection molding grade of PET. Specifically, these composites had tensile moduli as high as 5.7 GPa when reinforced with 30 weight percent HX1000. Also, it was determined that pregenerated microcomposites had smoother surfaces than glass-filled PET. 相似文献
10.
Summary A series of segmented copolyesters with semi-regular structure was synthesized. In these copolymers, fully aromatic triad hard segments-HB-T-HB-, acting as mesogenic units, are linked each other by poly(ethylene terephthalate) (PET) segments with different average chain lengths as flexible spacers. The liquid crystallinity of the copolymers, i.e. the meso-phase forming ability, was studied against length of the spacer. In subsequent blending of these copolymers with PET matrix, results were compared with those from a commercial TLCP of PHB/PET random copolyester. Better mechanical properties were gained as expected since the compatibility of the segmented liquid crystalline copolyesters with the matrix is believed to be improved. 相似文献
11.
The fibrillar and the lamellar structures in a range of poly(ethylene terephthalate) fibers were studied by small-angle X-ray scattering. The intensity maxima in the lamellar peaks lie on a curve that can be described as an ellipse. Therefore, the two-dimensional images were analyzed in elliptical coordinates. The dimensions of the coherently diffracting lamellar stack, the dimensions of the fibrils, the interfibrillar spacing, and the orientation of the lamellar surfaces were measured in addition to the lamellar spacing. The orientation of the lamellar planes and the size of the lamellar stacks had a better correlation with mechanical properties of the fibers than did the lamellar spacing. In particular, longer and wider lamellar stacks reduced fiber shrinkage, as did the closer alignment of the lamellar normal to the fiber axis. These structural features were also associated with lower tenacity. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 70: 2527–2538, 1998 相似文献
12.
This investigation explores the potential of improving the performance of poly(ethylene terephthalate) fibers by incorporating novel thermotropic liquid crystalline copolymers. Fibers were obtained by melt extrusion and the effect of processing conditions, i.e., spinning temperature, stretch ratio, and post treatment evaluated. The fibers were tested for mechanical performance, dimensional instability (shrinkage), and the development of shrinkage stresses. A segmented block copolymer consisting of rigid-rod, diad, and flexible coil segments was found to improve the performance of poly(ethylene terephthalate) (PET) fibers. At a concentration of 20 wt %, the alternating block copolymer increased the tensile modulus of the fibers by 40% and decreased free shrinkage by 20% compared to neat PET. © 1994 John Wiley & Sons, Inc. 相似文献
13.
David W. Litchfield Donald G. Baird Peter B. Rim Chen Chen 《Polymer Engineering and Science》2010,50(11):2205-2215
Improvements in Young's modulus and strength (tenacity) of poly(ethylene terephthalate) (PET) fibers were obtained by drawing unoriented nanocomposite filaments containing low concentrations (<3 wt%) of various organically modified montmorillonites (MMTs) in a second step at temperatures above the glass transition. Prior to melt spinning, solid‐state polymerization was used to rebuild lost molecular weight, due to MMT‐induced degradation, to a level suitable for producing high strength fibers. Greater improvements in mechanical properties occurred when the MMT stacks were intercalated with PET. A nominal 1 wt% loading of dimethyl‐dehydrogenated tallow quaternary ammonium surface modified MMT in drawn PET fiber showed a 28% and 63% increase in Young's modulus and strength, respectively. Relative to an unfilled PET fiber, these results surpassed the upper bound of the rule of mixtures estimate and suggested that both the type of surface modification and concentration of MMT affect the degree of PET orientation and crystallinity. Furthermore, drawability above Tg and elongation at break increased upon the addition of organically modified MMT to unoriented PET fibers, which was a key distinction of this work from others examining similar systems. POLYM. ENG. SCI., 2010. © 2010 Society of Plastics Engineers 相似文献
14.
A series of fibers based on neat poly(ethylene terephthalate) (PET) and PET/10% liquid crystalline polymer (LCP) blends were spun at various temperatures, ranging from 250 to 310°C, and the effect of spinning temperature on properties was studied. Improved tensile strengths and higher moduli of hot-drawn fibers were obtained with fibers spun at and above 300°C, which was explained by increased transesterification and the randomized structure of the PET/LCP blends. © 1995 John Wiley & Sons, Inc. 相似文献
15.
Crystallization of a series of liquid crystalline copolyesters prepared from p‐hydroxybenzoic acid (HBA), hydroquinone (HQ), terephthalic acid (TA), and poly(ethylene terephthalate) (PET) was investigated by using differential scanning calorimetry (DSC). It was found that these copolyesters are more crystalline than copolyesters prepared from PET and HBA. Insertion of HQ–TA disrupts longer rigid‐rod sequences formed by HBA and thus enhances molecular motion and increases the crystallization rate. The effects of additives on the crystallization of the copolyesters were also studied. Sodium benzoate (SB) and sodium acetate (SA) increase the crystallization rate of the copolyesters at low temperature, but not at high temperature. It is most likely that liquid crystalline copolyesters do not need nucleating agents, and small aggregates of local‐oriented rodlike segments in nematic phase could act as primary nuclei. Chain scission of the copolyesters caused by the reaction with the nucleating agents was proved by the determination of intrinsic viscosity and by the IR spectra. Diphenylketone (DPK) was shown to effectively promote molecular motion of chains, leading to an increase in the crystallization rate at low temperature, but it decreased the crystallization rate at high temperature. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 79: 497–503, 2001 相似文献
16.
The microstructures of amorphous and crystalline poly(ethylene terephthalate) (PET) homopolymers have been determined in terms of their trans and gauche conformational isomer contents by using a combination of infrared and density characterization techniques. The effects of isothermal crystallization (from the glassy state between 105–150°C), as well as the effects of different monomer units in the polymerization process, have been investigated. Results indicate that samples, polymerized from different monomer and catalyst systems, show different microstructures in terms of trans and gauche isomers.These variations result in significant differences in PET optical properties. Further investigations find that these dissimilar behaviors accompany conformational isomer variations in the amorphous phase, suggesting different transformation mechanisms of trans and gauche isomers at early stages of crystallization. These unlike microstructural transformation processes give rise to further changes, which are evident in terms of the intensity of Vv light scattering, haze values, thermal properties, and FTIR spectral results. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 70: 1965–1976, 1998 相似文献
17.
Poly(ethylene terephthalate)/p‐hydroxybenzoate (PET/PHB) copolymer materials have relatively low melt viscosity because of the 60 mol % PHB material having a value that is lower by approximately two orders of magnitude than the value for PET homopolymer. The structure development during melt spinning and thermal treatment (annealing) of liquid crystalline copolyesters, with a rigid backbone structure, were analyzed through the density, birefringence, X‐ray diffraction, DSC, dynamic viscoelasticity, and tensile testing. As the take‐up velocity increased, the birefringence of PET/PHB as‐spun fiber increased, which indicated that it directly influenced the initial modulus and specific stress. The lateral packing of PHB molecular chain in a copolymer was shown to be loosened in the course of thermal treatment. The thermal treatment slightly increased the crystal orientation factor, whereas total molecular orientation was decreased by annealing. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 1265–1278, 2004 相似文献
18.
Highly crystalline and oriented high‐strength poly(ethylene terephthalate) fibers by using low molecular weight polymer 下载免费PDF全文
High‐strength poly(ethylene terephthalate) (PET) fibers were obtained using low molecular weight (LMW) polymervia horizontal isothermal bath (hIB), followed by postdrawing process. We investigated the unique formations of different precursors, which differentiated in its molecular orientation and crystalline structures from traditional high‐speed spinning PET fibers. Sharp increase in crystallinity was observed after drawing process even though the fibers showed almost no any crystallinity before the drawing. Properties of as‐spun and drawn hIB and control filaments at different process conditions were compared. As would be expected, performances of resulted treated undrawn and drawn fibers have dramatically improved with developing unique morphologies. Tenacities more than 8 g/d for as‐spun and 10 g/d for drawn treated fibers after just drawn at 1.279 draw ratio were observed. These performances are considerably higher than that of control fibers. An explanation of structural development of high‐strength fibers using LMW polymer spun with hIB is proposed. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42747. 相似文献
19.
20.
Poly(ethylene terephthalate) (PET) based blends were obtained by melt blending PET with up to 30 wt% poly(ethylene‐octene) either modified with maleic anhydride (mLLDPE) or not (LLDPE). Both PET/LLDPE and PET/mLLDPE blends were immiscible. The dispersed phase particle size was large in LLDPE blends, but upon mLLDPE addition, it decreased to a small (submicron) and rather constant value with composition. This indicated compatibilization, and was attributed to specific interactions between the ester and maleic groups of PET and mLLDPE, respectively, rather than grafting reactions between components. Linear decreases in Young's modulus and yield stress, and ductility increases were observed in blends with mLLDPE. Super‐toughness was achieved in blends with mLLDPE, which took place when the critical interparticle distance (IDc) was below 0.17 μm and with only half the cross section of the specimens broken. The IDc of these blends and those of other blends from bibliography were compared with the adhesion levels estimated from the expected main interactions between the components of the blends. This comparison strongly indicated that, at least through an adhesion range, IDc depends on the adhesion level, and that IDc decreases as the adhesion level increases. POLYM. ENG. SCI. 46:172–180, 2006. © 2005 Society of Plastics Engineers 相似文献