首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
黄麻纤维增强聚丙烯的力学性能   总被引:9,自引:0,他引:9  
本文讨论了注塑成型黄麻纤维增强聚丙烯的制备方法和力学性能.将纤维重量含量分别为10%、20%和30%的复合材料进行比较,分析纤维含量对复合材料拉伸、弯曲和冲击性能的影响;将纤维分别切成约3mm、5mm和10mm长制成复合材料进行比较,分析纤维长度对复合材料拉伸、弯曲和冲击性能的影响.掺入黄麻纤维能使聚丙烯的拉伸和弯曲性能提高,但使其冲击强度降低;随纤维含量的增加或纤维长度的增加,复合材料的强度和模量是递增的,而冲击强度是递减的.  相似文献   

2.
用玻璃纤维对MC尼龙复合材料进行改性,研究了玻璃纤维含量及长度对MC尼龙复合材料力学性能的影响。结果表明:玻纤含量50%的MC尼龙同玻纤含量40%的MC尼龙相比,冲击强度、拉伸强度、弯曲强度分别提高29.63%、5.43%,6.47%;MC尼龙复合材料的拉伸强度、弯曲强度及冲击强度随玻璃纤维长度的增长而增加,玻纤的长度越长,MC尼龙复合料力学性能提升效果越好;MC尼龙复合材料弯曲强度与玻纤重均长度为正相关关系,随着玻纤重均长度增大而增大。  相似文献   

3.
A novel process has been developed to manufacture poly(methyl methacrylate) (PMMA) pultruded parts. The mechanical and dynamic mechanical properties, environmental effects, postformability of pultruded composites and properties of various fiber (glass, carbon and Kevlar 49 aramid fiber) reinforced PMMA composites have been studied. Results show that the mechanical and thermal properties (i.e. tensile strength, flexural strength and modulus, impact strength and HDT) increase with fiber content. Kevlar fiber/PMMA composites possess the highest impact strength and HDT, while carbon fiber/PMMA composites show the highest tensile strength, tensile and flexural modulus, and glass fiber/PMMA composites show the highest flexural strength. Experimental tensile strengths of all composites except carbon fiber/PMMA composites follow the rule of mixtures. The deviation of carbon fiber/PMMA composite is due to the fiber breakage during processing. Pultruded glass fiber reinforced PMMA composites exhibit good weather resistance. They can be postformed by thermoforming, and mechanical properties can be improved by postforming. The dynamic shear storage modulus (G′) of pultruded glass fiber reinforced PMMA composites increased with decreasing pulling rate, and G′ was higher than that of pultruded Nylon 6 and polyester composites.  相似文献   

4.
This work is aimed at determining the possibility of using crab carapace materials as reinforcing fillers in the coir fiber reinforced polyester composite. The sample preparation was carried out with three levels of fiber length (10, 30, & 50 mm), fiber weight content (10, 25, and 40%), and additive weight content (2, 4, and 6%). The composite sheets were prepared by impregnating crab carapace additive obtained from crab shell with coir fiber reinforced polyester composite using compression molding machine. The tensile, flexural, and impact strength of the composites were determined as per ASTM standards and regression models were developed to predict the mechanical behaviors of the composites using statistical technique. The fabrication parameters considered in this investigation has significantly contributed toward the mechanical properties of the composites. The developed regression models were optimized to obtain the maximum values of mechanical properties using single objective genetic algorithm and multiobjective lexicographic method in this investigation. POLYM. COMPOS., 37:844–853, 2016. © 2014 Society of Plastics Engineers  相似文献   

5.
This article concerns the effectiveness of various types and degrees of surface modification of sisal fibers involving dewaxing, alkali treatment, bleaching cyanoethylation and viny1 grafting in enhancing the mechanical properties, such as tensile, flexural and impact strength, of sisal‐polyester biocomposites. The mechanical properties are optimum at a fiber loading of 30 wt%. Among all modifications, cyanoethylation and alkali treatment result in improved properties of the biocomposites. Cyanoethylated sisal‐polyester composite exhibited maximum tensile strength (84.29 MPa). The alkali treated sisal‐polyester composite exhibited best flexural (153.94 MPa) and impac strength (197.88 J/m), which are, respectively, 21.8% and 20.9% higher than the corresponding mechanical properties of the untreated sisal‐polyester composites. In the case of vinyl grafting, acrylonitrile (AN)‐grafted sisal‐polyester composites show better mechanical properties than methyl‐methacrylate (MMA)‐grafted sisal composites. Scanning electron microscopic studies were carried out to analyze the fiber‐matrix interaction in various surface‐modified sisal‐polyester composites.  相似文献   

6.
Polypropylene/Pine apple leaf fiber (PP/PALF)‐reinforced nanocomposites were fabricated using melt blending technique in a twin‐screw extruder (Haake Rheocord 9000). Variation in mechanical properties, crystallization behavior, water absorption, and thermal stability with the addition of nanoclay in PP/PALF composites were investigated. It was observed that the tensile, flexural, and impact properties of PP increase with the increase in fiber loading from 10 to 30 wt %. Composites prepared using 30 wt % PALF and 5 wt % MA‐g‐PP exhibited optimum mechanical performance with an increase in tensile strength to 31%, flexural strength to 45% when compared with virgin PP. Addition of nanoclay results in a further increase in tensile and flexural strength of PP/PALF composites to 20 and 24.3%, which shows intercalated morphology. However, addition of nanoclay does not show any substantial increase in impact strength when compared with PP/PALF composites. Dynamic mechanical analysis tests revealed an increase in storage modulus (E′) and damping factor (tan δ), confirming a strong influence between the fiber/nanoclay and MA‐g‐PP. Differential scanning calorimetry, thermogravimetric analysis thermograms also showed improved thermal properties when compared with the virgin matrix. TEM micrographs also showed few layers of agglomerated clay galleries along with mixed nanomorphology in the nanocomposites. Wide angle X‐ray diffraction studies indicated an increase in d‐spacing from 22.4 Å in Cloisite 20A to 40.1 Å in PP/PALF nanocomposite because of improved intercalated morphology. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

7.
Coir, an important lignocellulosic fiber, can be incorporated in polymers like unsaturated polyester in different ways for achieving desired properties and texture. But its high level of moisture absorption, poor wettability and insufficient adhesion between untreated fiber and the polymer matrix lead to debonding with age. In order to improve the above qualities, adequate surface modification is required. In our present work, fiber surface modification was effected through dewaxing, alkali (5%) treatment, aqueous graft copolymerization of methyl methacrylate (MMA) onto 5% alkali treated coir for different extents using CuSO4 – NaIO4 combination as an initiator system and cyanoexhylation with a view to improve the mechanical performance of coir‐polyester composites. Mechanical properties like tensile strength (PS), flexural strength (ES) and impact strength (IS) of the composites as a function of fiber loading and fiber surface modification have been evaluated. Composites containing z5 wt% of fiber (untreated) improved tensile and flexural strength by 30% and 27% respectively in comparison to neat polyester. The work of fracture (impact strength) of the composite with 25 wt% fiber content was found to be 967 J/m. The elongation at break of the composites exhibits an increase with the introduction of fiber, All types of surface modification result In improved mechanical properties of the composites. Significant improvement in mechanical strength was also observed for composites prepared from 5% PMMA grafted fiber.  相似文献   

8.
This paper presents a comparison between particulate filled (SiC particles) and unfilled glass polyester composites on the basis of their mechanical and thermo-mechanical properties. The results show that particulate filled composites have a decreasing trend in mechanical properties when compared to the unfilled glass polyester composites. In particulate filled composites, the tensile and flexural strength of the composites decrease with the addition of 10 wt.-% SiC particles but increase with 20 wt.-% SiC particles. In the case of the unfilled glass polyester composite, the tensile and flexural strength of the composites increase with an increase in the fiber loading. However, higher values of tensile strength and flexural strength of particulate filled glass polyester were found than that of the unfilled glass polyester composite. In the case of thermo-mechanical and thermal properties, the particulate filled composites show better dynamical and thermal properties when compared to the unfilled glass polyester composites. The mechanical and thermal properties (i.e. thermal conductivity) are also calculated using FE modeling (ANSYS software) and the results from this simulation shows good agreement with the experimental results.  相似文献   

9.
This paper presents a novel process developed to manufacture poly(methyl methacrylate) (PMMA) pultruded composite. The mechanical, thermal, and dynamic mechanical properties, environmental effect, postformability of various fiber (glass, carbon, and Kevlar 49 aramid fiber) reinforced pultruded PMMA composites have been studied. Results show mechanical properties (i.e., tensile strength, specific tensile strength, tensile modulus, and specific flexural strength) and thermal properties (HDT) increase with fiber content. Kevlar fiber/PMMA composites possess the highest specific tensile strength and HDT, carbon fiber/PMMA composites show the highest tensile strength and tensile modulus, and glass fiber/PMMA composites show the highest specific flexural strength. Pultruded glass-fiber-reinforced PMMA composites exhibit good weather resistance. These composite materials can be postformed by thermoforming under pressure, and mechanical properties of postformed products can be improved. The dynamic shear storage and loss modulus (G′, G″) of pultruded glass-fiber-reinforced PMMA composites increased with decreasing pulling rate, and their shear storage moduli are higher than those of pultruded Nylon 6 and polyester composites.  相似文献   

10.
This experimental study evaluated the water absorption characteristics of pineapple leaf fiber (PALF)–polyester composites of different fiber content. The degree of water absorption was found to increase with fiber loading. The mechanism of diffusion was analyzed and the effect of fiber loading on the sorption kinetics was studied. The diffusion coefficient was calculated and found to increase with fiber content. Studies were also made to correlate water absorption with the cross‐sectional areas of the specimens. The effects of ageing on the tensile properties and dimensional stability of PALF polyester composites were studied under two different ageing conditions. Ageing studies showed a decrease in tensile strength of the composites. The composite specimens subjected to thermal ageing showed only a slight deterioration in strength. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 503–510, 2004  相似文献   

11.
为改善剑麻纤维(SF)与聚丙烯(PP)之间的相容性,在PP/SF复合材料中添加超支化聚酯(H101)、超支化环氧树脂(E102),研究了两种超支化聚合物(HBP)的热稳定性及对PP/SF复合材力学性能、熔体流动性和微观形貌的影响。热重分析表明,所使用的HBP均具有较好的热稳定性;扫描电子显微镜分析发现,HBP的加入使基体与纤维结合得更加紧密;力学性能测试表明,H101可不同程度地提高复合材料的拉伸、弯曲及冲击强度;E102可提高复合材料的拉伸及冲击强度,当E102含量为10%时,与PP/SF复合材料相比,冲击强度提高了72.24%。尽管HBP含量较高时复合材料的力学性能提高,但HBP会降低复合材料的熔体流动速率,选择HBP含量时需要综合考虑。  相似文献   

12.
In this study acrylonitrile‐butadiene‐styrene (ABS) terpolymer was reinforced with 3‐aminopropyltrimethoxysilane (APS)‐treated short glass fibers (SGFs). The effects of SGF concentration and extrusion process conditions, such as the screw speed and barrel temperature profile, on the mechanical properties of the composites were examined. Increasing the SGF concentration in the ABS matrix from 10 wt% to 30 wt% resulted in improved tensile strength, tensile modulus and flexural modulus, but drastically lowered the strain‐at‐break and the impact strength. The average fiber length decreased when the concentration of glass fibers increased. The increase in screw speed decreased the average fiber length, and therefore the tensile strength, tensile modulus, flexural modulus, and impact strength were affected negatively and the strain‐at‐break was affected positively. The increase in extrusion temperature decreased the fiber length degradation, and therefore the tensile strength, tensile modulus, flexural modulus, and impact strength increased. At higher temperatures the ABS matrix degraded and the mechanical strength of the composites decreased. To obtain a strong interaction at the interface, polyamide‐6 (PA6) at varying concentrations was introduced into the ABS/30 wt% SGF composite. The incorporation and increasing amount of PA6 in the composites broadened the fiber length distribution (FLD) owing to the low melt viscosity of PA6. Tensile strength, tensile modulus, flexural modulus, and impact strength values increased with an increase in the PA6 content of the ABS/PA6/SGF systems due to the improved adhesion at the interface, which was confirmed by the ratio of tensile strength to flexural strength as an adhesion parameter. These results were also supported by scanning electron micrographs of the ABS/PA6/SGF composites, which exhibited an improved adhesion between the SGFs and the ABS/PA6 matrix. POLYM. COMPOS. 26:745–755, 2005. © 2005 Society of Plastics Engineers  相似文献   

13.
The tensile and impact performance of intimately mixed (IM) hybrid composites based on glass fiber (GF) and pineapple leaf fiber (PALF) was investigated. The composite was fabricated at constant volume fraction of fiber 0.3 Vf (fiber 0.3 and matrix 0.7). Keeping the volume fraction of matrix a constant (0.7 Vf), we have varied the PALF/GF ratio from 0 to 1. Incorporation of 0.1 volume fraction of GF increases the tensile strength of the hybrid composite by about 28%. The tensile strength showed a further increase when the volume fraction is changed to 0.7 and 0.9 Vf of GF. Intimately mixed hybrid composites exhibited higher impact strength than the individual fiber composites; the composite of PALF/GF ratio 70:30 showed maximum impact strength of 1203 J/m. A positive hybrid effect is observed for impact properties. Scanning electron micrographs of the fractured surfaces were examined to understand the fiber‐matrix adhesion. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

14.
Two classes of nanocomposites were synthesized using an unsaturated polyester resin as the matrix and sodium montmorillonite as well as an organically modified montmorillonite as the reinforcing agents. X‐ray diffraction pattern of the composites showed that the interlayer spacing of the modified montmorillonite expanded from 1.25 nm to 4.5 nm, indicating intercalation. Glass transition values of these composites increased from 72°C, in the unfilled unsaturated polyester, to 86°C in the composite with 10% organically modified montmorillonite. From Scanning Electron Microscopy, it is seen that the degree of intercalation/exfoliation of the modified montmorillonite is higher than in the unmodified one. The mechanical properties also supported these findings, since in general, the tensile modulus, tensile strength, flexural modulus, flexural strength and impact strength of the composites with modified montmorillonite were higher than the corresponding properties of the composites with unmodified montmorillonite. The tensile modulus, tensile strength, flexural modulus and flexural strength values showed a maximum, whereas the impact strength exhibited a minimum at approximately 3–5 wt% modified montmorillonite content. These results imply that the level of exfoliation may also exhibit a maximum with respect to the modified montmorillonite content. The level of improvement in the mechanical properties was substantial. Adding only 3 wt% organically modified clay improved the flexural modulus of unsaturated polyester by 35%. The tensile modulus of unsaturated polyester was also improved by 17% at 5 wt% of organically modified clay loading.  相似文献   

15.
This paper reports the effect of chemical treatment on the mechanical properties of a natural fiber, isora, as reinforcement in unsaturated polyester resin. Isora fiber is separated from the bark of the Helicteres isora plant by a retting process. The short isora fiber surface was modified chemically by acetylation, benzoylation, silane and triton treatments to bring about improved interfacial interaction between the fiber and the polyester matrix. The modified surfaces were characterized by IR spectroscopy and SEM. The SEM studies were carried out to investigate the fiber surface morphology, fiber pull-out and fiber-polyester interface bonding. They showed the changes occuring on the fiber surface during chemical treatment. Properties like tensile strength, flexural strength and impact strength have been studied. The chemical modification of fiber improved fiber/matrix interaction as evidenced by the enhanced tensile and flexural properties. The lower impact properties of the composites, except triton-treated fiber composite, further point to the improved fiber/matrix adhesion, compared to the untreated fiber composites.  相似文献   

16.
In the recent years, lignocellulosic fibers that originate from a renewable source have been found to provide good reinforcement in polymer matrices. Among the natural fibers, pineapple leaf fiber (PALF) exhibits excellent mechanical properties, besides possessing low density, high stiffness, and low cost. The dynamic mechanical properties, storage modulus (E′), and loss tangent of PALF‐reinforced polyester (PER) composites were evaluated at three frequencies 0.1, 1, and 10 Hz and temperatures ranging from 30 to 200°C. Addition of PALF of 30 mm length (aspect ratio 600) was found to increase the storage modulus leading to a maximum value at 40 wt%. The glass transition temperature (Tg) of the composite of 40 wt% showed a positive shift indicating high polymer/fiber interaction. A new relaxation is observed at 40 wt% showing the presence of a strong interphase at all aspect ratios. SEM photographs of fracture surfaces of composites confirm the results obtained from static and dynamic mechanical analysis. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers  相似文献   

17.
M. Ramesh  P. Sudharsan 《SILICON》2018,10(3):747-757
The use of cellulosic fibers as reinforcing materials in polymer composites has gained popularity due to an increasing trend for developing sustainable materials. In the present experimental study, flax and glass fiber reinforced partially eco-friendly hybrid composites are fabricated with two different fiber orientations of 0° and 90°. The mechanical properties of these composites such as tensile, flexural and impact strengths have been evaluated. From the experiments, it has been observed that the composites with the 0° fiber orientation can hold the maximum tensile strength of 82.71 MPa, flexural strength of 143.99 MPa, and impact strength of 4 kJ/m2. Whereas the composites with 90° fiber orientation can withstand the maximum tensile strength of 75.64 MPa, flexural strength of 134.86 MPa, and impact strength of 3.99 kJ/m2. Morphological analysis is carried out to analyze fiber matrix interfaces and the structure of the fractured surfaces by using scanning electron microscopy (SEM). The finite element analysis (FEA) has been carried out to predict the resulting important mechanical properties by using ANSYS 12.0. From the results it is found that the experimental results are very close to the results predicted from FEA model values. It is suggested that these hybrid composites can be used as alternate materials for pure synthetic fiber reinforced polymer composite materials.  相似文献   

18.
The mechanical performance of short randomly oriented banana and sisal hybrid fiber reinforced polyester composites was investigated with reference to the relative volume fraction of the two fibers at a constant total fiber loading of 0.40 volume fraction (Vf), keeping banana as the skin material and sisal as the core material. A positive hybrid effect is observed in the flexural strength and flexural modulus of the hybrid composites. The tensile strength of the composites showed a positive hybrid effect when the relative volume fraction of the two fibers was varied, and maximum tensile strength was found to be in the hybrid composite having a ratio of banana and sisal 4 : 1. The impact strength of the composites was increased with increasing volume fraction of sisal. However, a negative hybrid effect is observed when the impact strength of the composites is considered. Keeping the relative volume fraction of the two fibers constant, that is, banana : sisal = 0.32 : 0.08 (i.e., 4 : 1), the fiber loading was optimized and different layering patterns were investigated. The impact strength of the composites was increased with fiber loading. Tensile and flexural properties were found to be better at 0.40 Vf. In the case of different layering patterns, the highest flexural strength was observed for the bilayer composites. Compared to other composites, the tensile properties were slightly higher for the composite having banana as the skin material and sisal as the core material. Scanning electron micrographs of the tensile and impact fracture surfaces of the hybrid composites having volume fraction 0.20 and 0.40 Vf were studied. The experimental tensile strength and tensile modulus of hybrid composites were compared with those of theoretical predictions. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 1699–1709, 2005  相似文献   

19.
In this paper, a series of two-component polyurethane resins were prepared by using polymethylene polyphenyl isocyanate (PMDI) and polypropylene glycol (PPG400) respectively as hard and soft segment. In order to further increase strength, stiffness and heat resistance of resin system, phthalic anhydride polyester polyol (PAPP) was used as second soft segment. The effects of content, functionality and molecular weight of PAPP on mechanical properties of PMDI-PPG resins were mainly studied. The results indicated comprehensive performance of polyurethane resin was best in the case of employing tri-functionality PAPP with a molecular weight of 400 and 40% content in soft segment. The resulting tensile, flexural and impact strength of polyurethane respectively reached 66.4, 92.0 MPa and 66.1kJ/m2. The tensile and flexural strength of glass fibre-reinforced polyurethane composite respectively reached 465 and 552?MPa. PMDI-PPG/PAPP system thus is expected as a new type of resin matrix used for high-performance polymer composites.  相似文献   

20.
以环氧树脂(EP)、双马来酰亚胺(BMI)、4,4’-二氨基二苯砜(DDS)和短切碳纤维(SCF)等为主要原料制备了EP/BMI/DDS/SCF复合材料,并研究了SCF添加量对复合材料力学性能和热性能的影响。结果表明,当SCF添加量为0.25 %(质量分数,下同)时,EP/BMI/DDS/SCF复合材料的力学性能提高最大,其拉伸强度、弯曲强度、弯曲模量和缺口冲击强度比未添加SCF时的EP/BMI/DDS复合材料分别提高了48.52 %、32.15 %、25.77 %以及150.91 %;此外,SCF的加入有助于提高复合材料的热性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号