首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Respiratory syncytial virus (RSV) causes acute lower respiratory tract infection in infants, immunocompromised individuals and the elderly. As the only current specific treatment options for RSV are monoclonal antibodies, there is a need for efficacious antiviral treatments against RSV to be developed. We have previously shown that a group of synthetic non-coding single-stranded DNA oligonucleotides with lengths of 25–40 nucleotides can inhibit RSV infection in vitro and in vivo. Based on this, herein, we investigate whether naturally occurring single-stranded small non-coding RNA (sncRNA) fragments present in the airways have antiviral effects against RSV infection. From publicly available sequencing data, we selected sncRNA fragments such as YRNAs, tRNAs and rRNAs present in human bronchoalveolar lavage fluid (BALF) from healthy individuals. We utilized a GFP-expressing RSV to show that pre-treatment with the selected sncRNA fragments inhibited RSV infection in A549 cells in vitro. Furthermore, by using a flow cytometry-based binding assay, we demonstrate that these naturally occurring sncRNAs fragments inhibit viral infection most likely by binding to the RSV entry receptor nucleolin and thereby preventing the virus from binding to host cells, either directly or via steric hindrance. This finding highlights a new function of sncRNAs and displays the possibility of using naturally occurring sncRNAs as treatments against RSV.  相似文献   

2.
3.
While the incidence of primary liver cancers has been increasing worldwide over the last few decades, the mortality has remained consistently high. Most patients present with underlying liver disease and have limited treatment options. In recent years, radiotherapy has emerged as a promising approach for some patients; however, the risk of radiation induced liver disease (RILD) remains a limiting factor for some patients. Thus, the discovery and validation of biomarkers to measure treatment response and toxicity is critical to make progress in personalizing radiotherapy for liver cancers. While tissue biomarkers are optimal, hepatocellular carcinoma (HCC) is typically diagnosed radiographically, making tumor tissue not readily available. Alternatively, blood-based diagnostics may be a more practical option as blood draws are minimally invasive, widely availability and may be performed serially during treatment. Possible blood-based diagnostics include indocyanine green test, plasma or serum levels of HGF or cytokines, circulating blood cells and genomic biomarkers. The albumin–bilirubin (ALBI) score incorporates albumin and bilirubin to subdivide patients with well-compensated underlying liver dysfunction (Child–Pugh score A) into two distinct groups. This review provides an overview of the current knowledge on circulating biomarkers and blood-based scores in patients with malignant liver disease undergoing radiotherapy and outlines potential future directions.  相似文献   

4.
Circulating MicroRNAs: Potential Biomarkers for Cancer   总被引:2,自引:0,他引:2  
Cancer is the leading cause of death in the world. Development of minimally invasive biomarkers for early detection of cancer is urgently needed to reduce high morbidity and mortality associated with malignancy. MicroRNAs (miRNAs) are small regulatory RNAs that modulate the activity of specific mRNA targets and play important roles in a wide range of physiologic and pathologic processes. Recently, miRNAs were found to be dysregulated in a variety of diseases including cancer. Emerging evidence suggests that miRNAs are involved in tumor initiation and progression. Together, the different expression profiles of miRNAs in cancer, and the stability of circulating miRNAs, make them new potentially clinical biomarkers for cancer diagnosis, classification, therapeutic decisions, and prognosis.  相似文献   

5.
Liquid biopsies constitute a minimally invasive means of managing cancer patients, entailing early diagnosis, follow-up and prediction of response to therapy. Their use in the germ cell tumor field is invaluable since diagnostic tissue biopsies (which are invasive) are often not performed, and therefore only a presumptive diagnosis can be made, confirmed upon examination of the surgical specimen. Herein, we provide an overall review of the current liquid biopsy-based biomarkers of this disease, including the classical, routinely used serum tumor markers—the promising microRNAs rapidly approaching the introduction into clinical practice—but also cell-free DNA markers (including DNA methylation) and circulating tumor cells. Finally, and importantly, we also explore novel strategies and challenges for liquid biopsy markers and methodologies, providing a critical view of the future directions for liquid biopsy tests in this field, highlighting gaps and unanswered questions.  相似文献   

6.
Since the emergence of high-throughput proteomic techniques and advances in clinical technologies, there has been a steady rise in the number of cancer-associated diagnostic, prognostic, and predictive biomarkers being identified and translated into clinical use. The characterisation of biofluids has become a core objective for many proteomic researchers in order to detect disease-associated protein biomarkers in a minimally invasive manner. The proteomes of biofluids, including serum, saliva, cerebrospinal fluid, and urine, are highly dynamic with protein abundance fluctuating depending on the physiological and/or pathophysiological context. Improvements in mass-spectrometric technologies have facilitated the in-depth characterisation of biofluid proteomes which are now considered hosts of a wide array of clinically relevant biomarkers. Promising efforts are being made in the field of biomarker diagnostics for haematologic malignancies. Several serum and urine-based biomarkers such as free light chains, β-microglobulin, and lactate dehydrogenase are quantified as part of the clinical assessment of haematological malignancies. However, novel, minimally invasive proteomic markers are required to aid diagnosis and prognosis and to monitor therapeutic response and minimal residual disease. This review focuses on biofluids as a promising source of proteomic biomarkers in haematologic malignancies and a key component of future diagnostic, prognostic, and disease-monitoring applications.  相似文献   

7.
Gastric cancer (GC) is the fifth most common type of cancer and the third leading cause of cancer death in the world. It is a disease that encompasses a variety of molecular alterations, including in non-coding RNAs such as circular RNAs (circRNAs). In the present study, we investigated hsa_circ_0000211, hsa_circ_0000284, hsa_circ_0000524, hsa_circ_0001136 and hsa_circ_0004771 expression profiles using RT-qPCR in 71 gastric tissue samples from GC patients (tumor and tumor-adjacent samples) and volunteers without cancer. In order to investigate the suitability of circRNAs as minimally invasive biomarkers, we also evaluated their expression profile through RT-qPCR in peripheral blood samples from patients with and without GC (n = 41). We also investigated the predicted interactions between circRNA-miRNA-mRNA and circRNA-RBP using the KEGG and Reactome databases. Overall, our results showed that hsa_circ_0000211, hsa_circ_0000284 and hsa_circ_0004771 presented equivalent expression profiles when analyzed by different methods (RNA-Seq and RT-qPCR) and different types of samples (tissue and blood). Further, functional enrichment results identified important signaling pathways related to GC. Thus, our data support the consideration of circRNAs as new, minimally invasive biomarkers capable of aiding in the diagnosis of GC and with great potential to be applied in clinical practice.  相似文献   

8.
Clinical, epidemiological, and experimental evidence demonstrate non-cancer, cardiovascular, and endocrine effects of ionizing radiation exposure including growth hormone deficiency, obesity, metabolic syndrome, diabetes, and hyperinsulinemia. Insulin-like growth factor-1 (IGF-1) signaling perturbations are implicated in development of cardiovascular disease and metabolic syndrome. The minipig is an emerging model for studying radiation effects given its high analogy to human anatomy and physiology. Here we use a minipig model to study late health effects of radiation by exposing male Göttingen minipigs to 1.9–2.0 Gy X-rays (lower limb tibias spared). Animals were monitored for 120 days following irradiation and blood counts, body weight, heart rate, clinical chemistry parameters, and circulating biomarkers were assessed longitudinally. Collagen deposition, histolopathology, IGF-1 signaling, and mRNA sequencing were evaluated in tissues. Our findings indicate a single exposure induced histopathological changes, attenuated circulating IGF-1, and disrupted cardiac IGF-1 signaling. Electrolytes, lipid profiles, liver and kidney markers, and heart rate and rhythm were also affected. In the heart, collagen deposition was significantly increased and transforming growth factor beta-1 (TGF-beta-1) was induced following irradiation; collagen deposition and fibrosis were also observed in the kidney of irradiated animals. Our findings show Göttingen minipigs are a suitable large animal model to study long-term effects of radiation exposure and radiation-induced inhibition of IGF-1 signaling may play a role in development of late organ injuries.  相似文献   

9.
Pancreatic cystic lesions are increasingly detected in cross-sectional imaging. Intraductal papillary mucinous neoplasm (IPMN) is a mucin-producing subtype of the pancreatic cyst lesions arising from the pancreatic duct system. IPMN is a potential precursor of pancreatic cancer. The transformation of IPMN in pancreatic cancer is progressive and requires the occurrence of low-grade dysplasia, high-grade dysplasia, and ultimately invasive cancer. Jaundice, enhancing mural nodule >5 mm, main pancreatic duct diameter >10 mm, and positive cytology for high-grade dysplasia are considered high-risk stigmata of malignancy. While increased levels of carbohydrate antigen 19-9 (CA 19-9) (>37 U/mL), main pancreatic duct diameter 5–9.9 mm, cyst diameter >40 mm, enhancing mural nodules <5 mm, IPMN-induced acute pancreatitis, new onset of diabetes, cyst grow-rate >5 mm/year are considered worrisome features of malignancy. However, cross-sectional imaging is often inadequate in the prediction of high-grade dysplasia and invasive cancer. Several studies evaluated the role of humoral and intra-cystic biomarkers in the prediction of malignancy in IPMN. Carcinoembryonic antigen (CEA), CA 19-9, intra-cystic CEA, intra-cystic glucose, and cystic fluid cytology are widely used in clinical practice to distinguish between mucinous and non-mucinous cysts and to predict the presence of invasive cancer. Other biomarkers such as cystic fluid DNA sequencing, microRNA (mi-RNA), circulating microvesicles, and liquid biopsy are the new options for the mini-invasive diagnosis of degenerated IPMN. The aim of this study is to review the literature to assess the role of humoral and intracystic biomarkers in the prediction of advanced IPMN with high-grade dysplasia or invasive carcinoma.  相似文献   

10.
Biomarkers for predicting individual response to radiation and for dose verification are needed to improve radiotherapy. A biomarker should optimally show signal fidelity, meaning that its level is stable and proportional to the absorbed dose. miRNA levels in human blood serum were suggested as promising biomarkers. The aim of the present investigation was to test the miRNA biomarker in leukocytes of breast cancer patients undergoing external beam radiotherapy. Leukocytes were isolated from blood samples collected prior to exposure (control); on the day when a total dose of 2 Gy, 10 Gy, or 20 Gy was reached; and one month after therapy ended (46–50 Gy in total). RNA sequencing was performed and univariate analysis was used to analyse the effect of the radiation dose on the expression of single miRNAs. To check if combinations of miRNAs can predict absorbed dose, a multinomial logistic regression model was built using a training set from eight patients (representing 40 samples) and a validation set with samples from the remaining eight patients (15 samples). Finally, Broadside, an explorative interaction mining tool, was used to extract sets of interacting miRNAs. The most prominently increased miRNA was miR-744-5p, followed by miR-4461, miR-34a-5p, miR-6513-5p, miR-1246, and miR-454-3p. Decreased miRNAs were miR-3065-3p, miR-103a-2-5p, miR-30b-3p, and miR-5690. Generally, most miRNAs showed a relatively strong inter-individual variability and different temporal patterns over the course of radiotherapy. In conclusion, miR-744-5p shows promise as a stable miRNA marker, but most tested miRNAs displayed individual signal variability which, at least in this setting, may exclude them as sensitive biomarkers of radiation response.  相似文献   

11.
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is a polyhalogenated planar hydrocarbon belonging to a group of highly toxic and persistent environmental contaminants known as “dioxins”. TCDD is an animal teratogen and carcinogen that is well characterized for causing immunosuppression through activation of aryl hydrocarbon receptor (AHR). In this study, we investigated the effect of exposure of mice to an acute dose of TCDD on the metabolic profile within the serum and cecal contents to better define the effects of TCDD on host physiology. Our findings demonstrated that within the circulating metabolome following acute TCDD exposure, there was significant dysregulation in the metabolism of bioactive lipids, amino acids, and carbohydrates when compared with the vehicle (VEH)-treated mice. These widespread changes in metabolite abundance were identified to regulate host immunity via modulating nuclear factor-kappa B (NF-κB) and extracellular signal-regulated protein kinase (ERK1/2) activity and work as biomarkers for a variety of organ injuries and dysfunctions that follow TCDD exposure. Within the cecal content of mice exposed to TCDD, we were able to detect changes in inflammatory markers that regulate NF-κB, markers of injury-related inflammation, and changes in lysine degradation, nicotinamide metabolism, and butanoate metabolism, which collectively suggested an immediate suppression of broad-scale metabolic processes in the gastrointestinal tract. Collectively, these results demonstrate that acute TCDD exposure results in immediate irregularities in the circulating and intestinal metabolome, which likely contribute to TCDD toxicity and can be used as biomarkers for the early detection of individual exposure.  相似文献   

12.
Upper urinary tract urothelial carcinoma (UTUC) represents a minor subgroup of malignancies arising in the urothelium of the renal pelvis or ureter. The estimated annual incidence is around 2 cases per 100,000 people, with a mean age at diagnosis of 73 years. UTUC is more frequently diagnosed in an invasive or metastatic stage. However, even though the incidence of UTUC is not high, UTUC tends to be aggressive and rapidly progressing with a poor prognosis in some patients. A significant challenge in UTUC is ensuring accurate and timely diagnosis, which is complicated by the non-specific nature of symptoms seen at the onset of disease. Moreover, there is a lack of biomarkers capable of identifying the early presence of the malignancy and guide-tailored medical treatment. However, the growing understanding of the molecular biology underlying UTUC has led to the discovery of promising new biomarkers. Among these biomarkers, there is a class of small non-coding RNA biomarkers known as microRNAs (miRNAs) that are particularly promising. In this review, we will analyze the main characteristics of UTUC and focus on microRNAs as possible novel tools that could enter clinical practice in order to optimize the current diagnostic and prognostic algorithm.  相似文献   

13.
Interstitial lung diseases (ILDs) include a large number of diseases and causes with variable outcomes often associated with progressive fibrosis. Although each of the individual fibrosing ILDs are rare, collectively, they affect a considerable number of patients, representing a significant burden of disease. Idiopathic pulmonary fibrosis (IPF) is the typical chronic fibrosing ILD associated with progressive decline in lung. Other fibrosing ILDs are often associated with connective tissues diseases, including rheumatoid arthritis-ILD (RA-ILD) and systemic sclerosis-associated ILD (SSc-ILD), or environmental/drug exposure. Given the vast number of progressive fibrosing ILDs and the disparities in clinical patterns and disease features, the course of these diseases is heterogeneous and cannot accurately be predicted for an individual patient. As a consequence, the discovery of novel biomarkers for these types of diseases is a major clinical challenge. Heat shock proteins (HSPs) are molecular chaperons that have been extensively described to be involved in fibrogenesis. Their extracellular forms (eHSPs) have been recently and successfully used as therapeutic targets or circulating biomarkers in cancer. The current review will describe the role of eHSPs in fibrosing ILDs, highlighting the importance of these particular stress proteins to develop new therapeutic strategies and discover potential biomarkers in these diseases.  相似文献   

14.
15.
16.
Prostate cancer (PCa) is a leading cause of cancer-related death of men globally. Since its introduction, there has been intense debate as to the effectiveness of the prostate specific antigen (PSA) test as a screening tool for PCa. It is now evident that the PSA test produces unacceptably high rates of false positive results and is not prognostic. Here we review the current status of molecular biomarkers that promise to be prognostic and that might inform individual patient management. It highlights current efforts to identify biomarkers obtained by minimally invasive methods and discusses current knowledge with regard to gene fusions, mRNA and microRNAs, immunology, and cancer-associated microparticles.  相似文献   

17.
Brain tumors are the most common malignant primary intracranial tumors of the central nervous system. They are often recognized too late for successful therapy. Minimally invasive methods are needed to establish a diagnosis or monitor the response to treatment of CNS tumors. Brain tumors release molecular information into the circulation. Liquid biopsies collect and analyze tumor components in body fluids, and there is an increasing interest in the investigation of liquid biopsies as a substitute for tumor tissue. Tumor-derived biomarkers include nucleic acids, proteins, and tumor-derived extracellular vesicles that accumulate in blood or cerebrospinal fluid. In recent years, circulating tumor cells have also been identified in the blood of glioblastoma patients. In this review of the literature, the authors highlight the significance, regulation, and prevalence of molecular biomarkers such as O6-methylguanine-DNA methyltransferase, epidermal growth factor receptor, and isocitrate dehydrogenase. Herein, we critically review the available literature on plasma circulating tumor cells (CTCs), cell-free tumors (ctDNAs), circulating cell-free microRNAs (cfmiRNAs), and circulating extracellular vesicles (EVs) for the diagnosis and monitoring of brain tumor. Currently available markers have significant limitations. While much research has been conductedon these markers, there is still a significant amount that we do not yet understand, which may account for some conflicting reports in the literature.  相似文献   

18.
Cardiovascular disease (CVD) is a leading cause of death worldwide. Elevated concentrations of serum total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) are major lipid biomarkers that contribute to the risk of CVD. Phytosterols well known for their cholesterol-lowering ability, are non-nutritive compounds that are naturally found in plant-based foods and can be classified into plant sterols and plant stanols. Numerous clinical trials demonstrated that 2 g phytosterols per day have LDL-C lowering efficacy ranges of 8–10%. Some observational studies also showed an inverse association between phytosterols and LDL-C reduction. Beyond the cholesterol-lowering beneficial effects of phytosterols, the association of phytosterols with CVD risk events such as coronary artery disease and premature atherosclerosis in sitosterolemia patients have also been reported. Furthermore, there is an increasing demand to determine the association of circulating phytosterols with vascular health biomarkers such as arterial stiffness biomarkers. Therefore, this review aims to examine the ability of phytosterols for CVD risk prevention by reviewing the current data that looks at the association between dietary phytosterols intake and serum lipid biomarkers, and the impact of circulating phytosterols level on vascular health biomarkers. The clinical studies in which the impact of phytosterols on vascular function is investigated show minor but beneficial phytosterols effects over vascular health. The aforementioned vascular health biomarkers are pulse wave velocity, augmentation index, and arterial blood pressure. The current review will serve to begin to address the research gap that exists between the association of dietary phytosterols with CVD risk biomarkers.  相似文献   

19.
20.
Early detection of prostate cancer (PC) is largely carried out using assessment of prostate-specific antigen (PSA) level; yet it cannot reliably discriminate between benign pathologies and clinically significant forms of PC. To overcome the current limitations of PSA, new urinary and serum biomarkers have been developed in recent years. Although several biomarkers have been explored in various scenarios and patient settings, to date, specific guidelines with a high level of evidence on the use of these markers are lacking. Recent advances in metabolomic, genomics, and proteomics have made new potential biomarkers available. A number of studies focused on the characterization of the specific PC metabolic phenotype using different experimental approaches has been recently reported; yet, to date, research on metabolomic application for PC has focused on a small group of metabolites that have been known to be related to the prostate gland. Exosomes are extracellular vesicles that are secreted from all mammalian cells and virtually detected in all bio-fluids, thus allowing their use as tumor biomarkers. Thanks to a general improvement of the technical equipment to analyze exosomes, we are able to obtain reliable quantitative and qualitative information useful for clinical application. Although some pilot clinical investigations have proposed potential PC biomarkers, data are still preliminary and non-conclusive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号