首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Poly(2-hydroxyethyl methacrylate) [poly(HEMA)] membranes were prepared by UV-initiated photopolymerization of HEMA in the presence of an initiator (α-α′-azobis-isobutyronitrile, AIBN). The triazine dye Cibacron Blue F3GA was attached as an affinity ligand to poly(HEMA) membranes, covalently. These affinity membranes with a swelling ratio of 58% and containing 10.7 mmol Cibacron Blue F3GA/m2 were used in the albumin adsorption studies. After dye-attachment, Zn(II) ions were chelated within the membranes via attached-dye molecules. Different amounts of Zn(II) ions [650–1440 mg Zn(II)/m2] were loaded on the membranes by changing the initial concentration of Zn(II) ions and pH. Bovine serum albumin (BSA) adsorption on these membranes from aqueous solutions containing different amounts of BSA at different pH was investigated in batch reactors. The nonspecific adsorption of BSA on the poly(HEMA) membranes was negligible. Cibacron Blue F3GA attachment significantly increased the BSA adsorption up to 92.1 mg BSA/m2. Adsorption capacity was further increased when Zn(II) ions were attached (up to 144.8 mg BSA m2). More than 90% of the adsorbed BSA was desorbed in 1 h in the desorption medium containing 0.5M NaSCN at pH 8.0 and 0.025M EDTA at pH 4.9. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 68: 657–664, 1998  相似文献   

2.
Lysozyme adsorption onto dye‐attached nonporous monosize poly(2‐hydroxyethyl‐methacrylate‐methylmethacrylate) [poly(HEMA‐MMA)] microspheres was investigated. Poly(HEMA‐MMA) microspheres were prepared by dispersion polymerization. The monochloro‐triazine dye, Cibacron Blue F3GA, was immobilized covalently as dye–ligand. These dye‐affinity microspheres were used in the lysozyme adsorption–desorption studies. The effect of initial concentration of lysozyme and medium pH on the adsorption efficiency of dye‐attached and metal‐chelated microspheres were studied in a batch reactor. Effect of Cu(II) chelation on lysozyme adsorption was also studied. The nonspecific adsorption of lysozyme on the poly(HEMA‐MMA) microspheres was 3.6 mg/g. Cibacron Blue F3GA attachment significantly increased the lysozyme adsorption up to 247.8 mg/g. Lysozyme adsorption capacity of the Cu(II) incorporated microspheres (318.9 mg/g) was greater than that of the Cibacron Blue F3GA‐attached microspheres. Significant amount of the adsorbed lysozyme (up to 97%) was desorbed in 1 h in the desorption medium containing 1.0M NaSCN at pH 8.0 and 25 mM EDTA at pH 4.9. In order to examine the effects of separation conditions on possible conformational changes of lysozyme structure, fluorescence spectrophotometry was employed. We conclude that dye‐ and metal‐chelate affinity chromatography with poly(HEMA‐MMA) microspheres can be applied for lysozyme separation without causing any significant changes and denaturation. Repeated adsorption/desorption processes showed that these novel dye‐attached monosize microspheres are suitable for lysozyme adsorption. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 115–124, 2000  相似文献   

3.
Poly(ethylene glycol dimethacrylate-hydroxyethyl methacrylate) [poly-(EGDMA-HEMA)]microbeads in the size range of 150–200 μm were produced by a modified suspension copolymerization of EGDMA and HEMA. The dyes (Congo red, Cibacron blue F3GA, and alkali blue 6B) were covalently immobilized; then, Zn(II) ions were incorporated within the microbeads by chelation with the dye molecules. The maximum amounts of dye loadings were 14.5 μmol/g, 16.5 μmol/g, and 23.7 μmol/g for Congo red, Cibacron blue F3GA, and alkali blue 6B, respectively. Different amounts of Zn(II) ions(2.9–53.8 mg/g polymer) were incorporated on the microbeads by changing the initial concentration of Zn(II) ions and the pH of the medium. Bovine serum albumin (BSA) adsorption onto dye/Zn(II)-derived microbeads containing Congo red, Cibacron blue F3GA, and alkali blue 6B was investigated. The maximum BSA adsorptions onto the dye/Zn(II)-derived microbeads from aqueous solutions containing different amounts of BSA were 159 mg/g, 122 mg/g, and 93 mg/g for the Congo red, Cibacron blue F3GA, and alkali blue 6B dyes, respectively. The maximum BSA adsorptions were observed at pH 6.0 in all cases. Desorption of BSA molecules was achieved by using 0.025M EDTA (pH 4.9). High desorption ratios (more than 93% of the adsorbed BSA) were observed in all cases. It was possible to reuse these novel metal chelate sorbents without significant losses in their adsorption capacities. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 65: 2085–2093, 1997  相似文献   

4.
Poly(N-vinylimidazole) (PVIm) gels were prepared by irradiating a binary mixture of N-vinylimidazole (VIm)–water in a 60Co-γ source having 4.5 kGy/h dose rate. In the glucose oxidase (GOx) adsorption studies, affinity gels with a swelling ratio of 1100% for PVIm and 40 and 55% for Cu(II)- and Co(II)-chelated PVIm gels, respectively, at pH 6.5 in phosphate buffer were used. FTIR spectra were taken for PVIm and Cu(II)- and Co(II)-chelated PVIm, and glucose oxidase adsorption on these gels, to characterize the nature of the interactions in each species. The results show that PVIm–glucose oxidase interaction is mainly electrostatic and metal ion–chelated PVIm gel–glucose oxidase interaction is of coordinate covalent nature. Cu(II) and Co(II) ions were chelated within the gels via amine groups on the imidazole ring of the gel. Different amounts of Cu(II) and Co(II) ions [maximum 3.64 mmol/g dry gel for Cu(II) and 1.72 mmol/g dry gel for Co(II)] were loaded on the gels by changing the initial concentration of Cu(II) and Co(II) ions at pH 7.0. GOx adsorption on these gels from aqueous solutions containing different amounts of GOx at different pH was investigated in batch reactors. GOx adsorption capacity was further increased when Cu(II) and Co(II) ions were attached [up to 0.53 g GOx/g dry Co(II)-chelated PVIm gels]. More than 90% of the adsorbed GOx was desorbed in 5 h in desorption medium containing 1.0M KSCN at pH 7.0 for plain gel and 0.05M EDTA at pH 4.9 for metal-chelated gel. Nonspecific glucose oxidase adsorption on/in the metal ion–chelated PVIm gel was investigated using 0.02M of phosphate buffer solution. The nonspecific GOx adsorption was determined to be about 18% for PVIm and 8% for the metal ion–chelated PVIm gels. The ionic strength effect was investigated both on PVIm and on the metal ion–chelated PVIm gels for the glucose oxidase adsorption. It was found that ionic strength was more effective on the PVIm gel because of the electrostatic interaction between protonated gel and the deprotonated glucose oxidase side chain. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 446–453, 2001  相似文献   

5.
Poly[ethyleneglycoldimethacrylate (EGDMA)–hydroxyethylmethacrylate (HEMA)] microspheres (150–200 μm in diameter) were produced by suspension copolymerization of EGDMA and HEMA in an aqueous medium. Toluene was included in the formulations in order to produce water-swellable microspheres. Poly(vinyl alcohol) and benzoyl peroxide were used as stabilizer and initiator, respectively. Congo red was chemically attached to the microspheres as a metal chelating ligand for specific adsorption of heavy metal ions. These sorbents were characterized by an optical microscopy and a FTIR. Adsorption/desorption of cadmium (Cd2+) ions from aqueous solutions on these sorbents were investigated in batch equilibrium experiments by using an atomic absorption spectroscopy with a graphite furnace atomizer. The maximum cadmium adsorption on to the dye-attached microspheres (i.e., by complex formation) was about 18.3 mg Cd2+ ions/g polymer, which was observed at pH 6.8. While adsorption onto the plain poly(EGDMA–HEMA) microspheres (i.e., nonspecific adsorption) was about 0.93 mg Cd2+ ions/g polymer at the same conditions. More than 90% of the adsorbed cadmium was desorbed in 1 h by using 2M NaCl as an eluant. The resorption capacity of the sorbent did not significantly decrease during repeated sorption–desorption cycling. © 1996 John Wiley & Sons, Inc.  相似文献   

6.
N‐Methacryloyl‐(L )‐histidine methyl ester (MAH) was synthesized from metharyloyl chloride and histidine. Spherical beads with an average size of 150–250 μm were obtained by the suspension polymerization of ethylene glycol dimethacrylate and MAH in an aqueous dispersion medium. Magnetic poly(ethylene glycol dimethacrylate‐coN‐Methacryloyl‐(L )‐histidine methyl ester) [m‐p(EGDMA‐co‐MAH)] microbeads were characterized with swelling tests, electron spin resonance, elemental analysis, and scanning electron microscopy. The specific surface area of the beads was 80.1 m2/g. m‐p(EGDMA‐co‐MAH) microbeads with a swelling ratio of 40.2% and 43.9 μmol of MAH/g were used for the adsorption of bovine serum albumin (BSA) in a batch system. The Cu(II) concentration was 4.1 μmol/g. The adsorption capacity of BSA on the Cu(II)‐incorporated beads was 19.2 mg of BSA/g. The BSA adsorption first increased with the BSA concentration and then reached a plateau, which was about 19.2 mg of BSA/g. The maximum adsorption was observed at pH 5.0, which was the isoelectric point of BSA. The BSA adsorption increased with decreasing temperature, and the maximum adsorption was achieved at 4°C. High desorption ratios (>90% of the adsorbed BSA) were achieved with 1.0M NaSCN (pH 8.0) in 30 min. The nonspecific adsorption of BSA onto the m‐p(EGDMA‐co‐MAH) beads was negligible. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 2669–2677, 2004  相似文献   

7.
8.
SUMMARY Polymer metal complexes of poly(maleic acid) and Cu(II), Co(II), Ni(II), and Zn(II) were synthesized. Elemental analysis, as well as magnetic, spectral and thermal properties, in addition to electrical conductivities of the chelates were investigated, and possible structures have been assigned to the polychelates. Semi-empirical calculations at the PM3 level were carried out on the geometrical arrangement of the polychelates. Received: 19 November 1999/Revised version: 22 March 2000/Accepted: 31 March 2000  相似文献   

9.
A number of polymer carriers with chelating groups such as diketones, diacylamines, and enaminoketones has been synthesized. The immobilized mono- and binuclear chelates have been prepared by the interaction of these polymeric ligands with nickel(II) and cobalt(II) acetates in alcohol. Spectral and magnetic data confirm the tetrahedral structure of the cobalt complexes and octahedral structure of the nickel complexes. The catalytic properties of the immobilized complexes in ethylene dimerization and butadiene polymerization have been investigated.  相似文献   

10.
Molecular imprinting has become an established technique. However, little was done on direct investigation of the sorbents produced. In the present work, en ESR method was used for the investigation of the complex formation processes within the sorbents imprinted with copper(II) and nickel(II). The sorbents were synthesized from a mixture of linear low molecular weight polyethyleneimine oligomers. The composition, structure and distribution of complexes in the resin phase were investigated. The effects of the synthesis conditions, loading degree and water content were examined. The presence of certain copper complexes was found to be a convenient characteristic of the imprinting efficiency. The optimum synthesis conditions for obtaining sorbents imprinted with copper(II) or nickel(II) were identified. The imprinting results in the improvement of the stability of the complexes and the selectivity and working capacity of the sorbents. The imprinted samples are also characterized by a more even distribution of chelating sites. The synthesis conditions and loading by ions allow for the regulation of the ratio between individual complexes and magnetic associates in the resin phase. This is a critical point on the future use of the metal containing imprinted sorbents as catalysts.  相似文献   

11.
《Reactive Polymers》1991,14(1):41-47
The synthesis of palladium(II) chelate monomers involving 1-phenyl-4-methylpent-4-en-1,3-dione and 1 phenyl-3-anilino-4-methylpent-4-en-1-one has been developed. New polymer-containing metal chelate units have been prepared by post-grafting polymerization of these monomers and the products characterized by elemental analysis and IR spectroscopy. The catalytic properties of the immobilized complexes in chloronitrobenzene hydrogenation have been studied.  相似文献   

12.
A chelating polymeric sorbent was developed by functionalizing poly(glycidyl methacrylate-co-trimethylolpropane trimethacrylate), poly(GMA-co-TRIM), with N-methylglucamine (MG) via a simple post-grafting route. The resulting well-defined millimeter-sized spheres of poly(GMA-co-TRIM)–MG had permanent macropore structures and low swelling degree, with accessible ligands of 1.84 mmol/g. The boron adsorption behavior of the sorbent was studied in batch mode by varying different parameters like the pH value, the initial concentration of boron and the adsorption time under noncompetitive conditions. It was found that the sorbent always maintained the high capacity between pH 2.6 and 8.6, in which the optimum pH was 7.5. The adsorption behavior of the sorbent obeyed the Langmuir isotherm well. The adsorption capacity of the sorbent for boron was in the same level as that of a commercially available N-methylglucamine-type polystyrene resin. However, it adsorbed boron more quickly. The sorbent also showed good durability and reusability through the fixed-bed adsorption tests. The study on the separation of boron from brine of salt lake showed a high selectivity of the sorbent, though the capacity for boron decreased due to the interference of diverse ions in brine.  相似文献   

13.
Poly(methyl methacrylate) (PMMA) microspheres carrying poly(ethylene imine) (PEI) were prepared for the removal of heavy‐metal ions (copper, cadmium, and lead) from aqueous solutions with different amounts of these ions (50–600 mg/L) and different pH values (3.0–7.0). Ester groups in the PMMA structures were converted to imine groups in a reaction with PEI as a metal‐chelating ligand in the presence of NaH. The adsorption of heavy‐metal ions on the unmodified PMMA microspheres was very low [3.6 μmol/g for Cu(II), 4.6 μmol/g for Cd(II), and 4.2 μmol/g for Pb(II)]. PEI immobilization significantly increased the heavy‐metal adsorption [0.224 mmol/g for Cu(II), 0.276 mmol/g for Cd(II), and 0.126 mmol/g for Pb(II)]. The affinity order of adsorption (in moles) was Cd(II) > Cu(II) > Pb(II). The adsorption of heavy‐metal ions increased with increasing pH and reached a plateau value around pH 5.5. Their adsorption behavior was approximately described with the Langmuir equation. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 197–205, 2001  相似文献   

14.
A sample‐preparation step, before chromatographic analysis, is frequently performed to enrich the components of interest from a complex matrix. This step is also needed to purify and concentrate the analyte present in a highly dilute medium. Solid‐phase extraction (SPE) with a specific sorbent is one of the most widely used techniques for extracting trace components from aqueous or nonaqueous media. In this method, analytes are extracted by the passage of the medium through a cartridge containing a solid matrix. The recovery of the analytes from the medium considerably depends on the extent of the interactions between the analytes and the sorbent. Through the enhancement of these interactions, the extent of the uptake of the analytes can be improved. Poly(acrylic acid) is commonly employed as the sorbent in SPE for the isolation of polar analytes. This article discusses the use of the metal‐containing polymer poly(ferric acrylate) as the sorbent for the isolation of a few phenols as representative components from water. The results indicate that the metal‐containing polymer has an enhanced adsorption capacity in comparison with the capacity of the widely used sorbent poly(acrylic acid). © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 2184–2187, 2002  相似文献   

15.
Poly(divinylbenzene) (poly(DVB)) microspheres with controllable pore structure were synthesized by suspension polymerization in the presence of toluene and low‐molecular weight poly(propylene) (PP) as coporogen. The weight fraction of PP in toluene varied from 0 to 20 wt %, and the feed ratio of coporogen and DVB was kept at 1/1 (vol/vol). Effects of PP weight fraction in coporogen on the specific surface area, the average pore size, the pore size distribution and the total pore volume of final microspheres were examined. As expected, poly(DVB) microspheres prepared with toluene as sole porogen had a high specific surface area (558 m2/g). Using mixtures of toluene and PP as coporogen, it was found that the specific surface area shifted higher values when low levels of PP (2.0–6.0 wt %) in toluene were used as coporogen. However, further increase of PP weight fraction in toluene resulted in progressive decline of the specific surface area. Hg intrusion/extrusion curves and N2 sorption isotherms implied caged pore structure with some small entrances. Furthermore, most of pore connectivity limitations may be eliminated when the weight fraction of PP in toluene exceeded 10.0 wt %. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

16.
Microporous poly(2-hydroxyethyl methacrylate) (PHEMA) membranes were prepared by UV-initiated photopolymerization of HEMA in the presence of an initiator (α,α′-azobisisobutyronitrile, AIBN). An affinity dye Cibacron Blue F3GA (CB) was attached covalently and then Fe3+ ions incorporated. The PHEMA-CB and PHEMA-CB-Fe3+ membranes derived were used for adsorption of glucose oxidase (GOD). The adsorption capacities of these membranes were determined under conditions of different pH and with different concentrations of the adsorbate in the medium. The adsorption phenomena appeared to follow a typical Langmuir isotherm. The glucose oxidase adsorption capacity of the Fe3+ incorporated membrane (87μgcm-2) was greater than that of the dye-derived membrane (66μgcm-2). Non-specific adsorption of the glucose oxidase on the PHEMA membranes was negligible. The Km values for both immobilized glucose oxidase PHEMA-CB-GOD (8·3) and PHEMA-CB-Fe3+-GOD (7·6) were higher than that of the free enzyme (6·2mM). Optimum reaction pH was 5·5 for the free and 6·0 for both immobilized preparations. The optimum reaction temperature of the adsorbed enzymes was 5°C higher than that of the free enzyme and was significantly broader. After 15 successive uses the retained activity of the adsorbed enzyme was 87%. It was observed that enzymes could be repeatedly adsorbed and desorbed on the derived PHEMA membranes without significant loss in adsorption capacity or enzymic activity. © 1998 SCI.  相似文献   

17.
The utility of the Poly(3‐hydroxybutyrate) (PHB) to encapsulate and control the release of bovine serum albumin (BSA), via microspheres, was investigated. Various preparing parameters, including polymer concentration in oil phase, emulsification concentration in external water phase, volume ratio of inner water phase to oil phase, and volume ratio of primary emulsion to external water phase were altered during the microspheres production. The effects of these changes on the morphological characteristics of the microspheres, size of the microspheres, drug loading, encapsulation efficiency, and drug release rates were examined. The diameter of the microspheres ranged from 6.9 to 20.3 μm and showed different degrees of porous structure depending on the different preparation parameters. The maximum and minimum BSA encapsulation efficiency within the polymeric microspheres were 69.8 and 7.5%, respectively, varying with preparation conditions. The controlled release characteristics of the microspheres for BSA were investigated in pH 7.4 media. The initial BSA burst release from 8.9 to 63.1% followed by constant slow release for 28 days was observed for BSA from BSA‐loaded microspheres and followed the Higuchi matrix model. So, the release behavior of microspheres showed the feasibility of BSA‐loaded microspheres as controlled release devices. Pristine BSA, pristine PHB microspheres, and BSA‐loaded microspheres were analyzed by Fourier transform infrared spectrophotometer, which indicated no interaction between BSA and PHB. Differential scanning calorimetry on BSA‐loaded microspheres indicated a molecular level dispersion of BSA in the microspheres. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

18.
Silencing prion: Copper-catalyzed transformations of prion protein (PrP) lead to the production of reactive oxygen species (ROS), PrP oxidation, and cleavage and aggregation in transmissible spongiphorm encephalopathies. Zn(7) MT-3 efficiently targets Cu(II) bound in different coordination modes to PrP-Cu(II) . By an unusual redox-dependent metal-swap reaction, MT-3 modulates the catalytic redox properties of PrP-Cu(II) .  相似文献   

19.
SUMMARY Polychelates of poly(maleic acid-co-olefin) with Cu(II), Co(II), Ni(II), and Zn(II) metal ions are synthesized. These compounds are characterized by FT IR, UV-vis spectroscopy, and thermal analysis. The electrical conductivity measurements are carried out. These demonstrate that at temperature close to 130°C the electrical conductivity increased to values near to the semiconductor range. The PM3 calculations are also carried to study the geometry of the polychelates. Received: 1 November 2000/Revised version: 20 March 2001/Accepted: 21 March 2001  相似文献   

20.
Polyactide (PLA) and poly(lactide-co-glycolide) (PLGA) were prepared by bulk ring-opening polymerization of lactide or lactide/glycolide using stannous octoate as initiator. PLA and PLGA microspheres with an average diameter of 65–100 μm were prepared by a solvent evaporation process. An in vitro degradation test of different molecular weight PLA and of different composition PLGA were carried out in pH 7.4 buffer solution at 37°C in the form of microspheres. Quantitatively, the degree of degradation was monitored by gel permeation chromatography (GPC), by measurement of mass loss and determination of lactic/glycolic acid in degradation medium, and qualitatively, by observing the morphological changes of microspheres with a scanning electron microscope (SEM). The decrease in weight average molecular weight (M w) for PLA with higher molecular weight is faster at the first degradation stage; afterward, the tendency of M w to decrease for PLA with different molecular weight is almost the same. PLGA degrades much faster than does PLA, and the degradation rate is significantly enhanced with the increase of glycolic acid (GA) content in copolymers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号