首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Poly(ethylene glycol dimethacrylate-hydroxyethyl methacrylate) [poly-(EGDMA-HEMA)]microbeads in the size range of 150–200 μm were produced by a modified suspension copolymerization of EGDMA and HEMA. The dyes (Congo red, Cibacron blue F3GA, and alkali blue 6B) were covalently immobilized; then, Zn(II) ions were incorporated within the microbeads by chelation with the dye molecules. The maximum amounts of dye loadings were 14.5 μmol/g, 16.5 μmol/g, and 23.7 μmol/g for Congo red, Cibacron blue F3GA, and alkali blue 6B, respectively. Different amounts of Zn(II) ions(2.9–53.8 mg/g polymer) were incorporated on the microbeads by changing the initial concentration of Zn(II) ions and the pH of the medium. Bovine serum albumin (BSA) adsorption onto dye/Zn(II)-derived microbeads containing Congo red, Cibacron blue F3GA, and alkali blue 6B was investigated. The maximum BSA adsorptions onto the dye/Zn(II)-derived microbeads from aqueous solutions containing different amounts of BSA were 159 mg/g, 122 mg/g, and 93 mg/g for the Congo red, Cibacron blue F3GA, and alkali blue 6B dyes, respectively. The maximum BSA adsorptions were observed at pH 6.0 in all cases. Desorption of BSA molecules was achieved by using 0.025M EDTA (pH 4.9). High desorption ratios (more than 93% of the adsorbed BSA) were observed in all cases. It was possible to reuse these novel metal chelate sorbents without significant losses in their adsorption capacities. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 65: 2085–2093, 1997  相似文献   

2.
Affinity dye-ligand Cibacron Blue F3GA, was covalently coupled with poly(EGDMA-HEMA) microbeads via nucleophilic reaction between the chloride of its triazine ring and the hydroxyl groups of the HEMA under alkaline conditions. The microbeads carrying 16.5 μmol Cibacron Blue F3GA per gram polymer was incorporated with Zn(II) ions. Zn(II) loading was 189.6 μmol/g. Cibacron Blue F3GA-Zn(II) attached affinity sorbent was used for albumin adsorption from aqueous solutions and human plasma in a packed-bed column. BSA adsorption capacity of the microbeads decreased with an increase in the recirculation rate. High adsorption rates were observed at the beginning, then equilibrium was gradually achieved in about 60 min. The BSA concentration in the mobile phase also effected adsorption. BSA adsorption was first increased with BSA concentration, then reached a plateau which was about 128 mg BSA/g. The maximum adsorption was observed at pH 5.0 which is the isoelectric pH of BSA. Higher human serum albumin adsorption was observed from human plasma (215 mg HSA/g). High desorption ratios (over 90% of the adsorbed albumin) were achieved by using 1.0 M NaSCN (pH 8.0) in 30 min.  相似文献   

3.
Poly(2-hydroxyethyl methacrylate) [poly(HEMA)] membranes were prepared by UV-initiated photopolymerization of HEMA in the presence of an initiator (α-α′-azobis-isobutyronitrile, AIBN). The triazine dye Cibacron Blue F3GA was attached as an affinity ligand to poly(HEMA) membranes, covalently. These affinity membranes with a swelling ratio of 58% and containing 10.7 mmol Cibacron Blue F3GA/m2 were used in the albumin adsorption studies. After dye-attachment, Zn(II) ions were chelated within the membranes via attached-dye molecules. Different amounts of Zn(II) ions [650–1440 mg Zn(II)/m2] were loaded on the membranes by changing the initial concentration of Zn(II) ions and pH. Bovine serum albumin (BSA) adsorption on these membranes from aqueous solutions containing different amounts of BSA at different pH was investigated in batch reactors. The nonspecific adsorption of BSA on the poly(HEMA) membranes was negligible. Cibacron Blue F3GA attachment significantly increased the BSA adsorption up to 92.1 mg BSA/m2. Adsorption capacity was further increased when Zn(II) ions were attached (up to 144.8 mg BSA m2). More than 90% of the adsorbed BSA was desorbed in 1 h in the desorption medium containing 0.5M NaSCN at pH 8.0 and 0.025M EDTA at pH 4.9. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 68: 657–664, 1998  相似文献   

4.
Poly(methyl methacrylate) (PMMA) microspheres carrying poly(ethylene imine) (PEI) were prepared for the removal of heavy‐metal ions (copper, cadmium, and lead) from aqueous solutions with different amounts of these ions (50–600 mg/L) and different pH values (3.0–7.0). Ester groups in the PMMA structures were converted to imine groups in a reaction with PEI as a metal‐chelating ligand in the presence of NaH. The adsorption of heavy‐metal ions on the unmodified PMMA microspheres was very low [3.6 μmol/g for Cu(II), 4.6 μmol/g for Cd(II), and 4.2 μmol/g for Pb(II)]. PEI immobilization significantly increased the heavy‐metal adsorption [0.224 mmol/g for Cu(II), 0.276 mmol/g for Cd(II), and 0.126 mmol/g for Pb(II)]. The affinity order of adsorption (in moles) was Cd(II) > Cu(II) > Pb(II). The adsorption of heavy‐metal ions increased with increasing pH and reached a plateau value around pH 5.5. Their adsorption behavior was approximately described with the Langmuir equation. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 197–205, 2001  相似文献   

5.
Congo Red-modified poly(EGDMA–HEMA) microbeads were investigated as a specific sorbent for bilirubin removal from human plasma. Poly(EGDMA–HEMA) microbeads were prepared by a modified suspension copolymerization technique. Congo Red was covalently incorporated into the poly(EGDMA–HEMA) microbeads via condensation reactions between the aromatic amine groups of the dyes and the hydroxyl groups of the HEMA, under alkaline conditions. Bilirubin adsorption was investigated from hyperbilirubinemic human plasma on the poly(EGDMA–HEMA) microbeads containing different amounts of attached Congo Red (between 2.5 and 14.6 μmol/g). The nonspecific bilirubin adsorption on the unmodified poly(EGDMA–HEMA) microbeads were 0.32 mg/g from human plasma. High adsorption rates were observed at the beginning, and the adsorption equilibrium was then gradually achieved in about 30–60 min. Much higher bilirubin adsorption values, up to 11.7 mg/g, were obtained with the Congo Red-modified microbeads especially at 37°C. The numbers (as μmol) of bilirubin molecules to albumin molecules adsorbed on the sorbent microbeads were in the range of 15–20, which showed that bilirubin molecules were preferentially adsorbed to the Congo Red-modified microbeads. Bilirubin adsorption increased with increasing temperature. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 68:373–380, 1998  相似文献   

6.
Poly[ethyleneglycoldimethacrylate (EGDMA)–hydroxyethylmethacrylate (HEMA)] microspheres (150–200 μm in diameter) were produced by suspension copolymerization of EGDMA and HEMA in an aqueous medium. Toluene was included in the formulations in order to produce water-swellable microspheres. Poly(vinyl alcohol) and benzoyl peroxide were used as stabilizer and initiator, respectively. Congo red was chemically attached to the microspheres as a metal chelating ligand for specific adsorption of heavy metal ions. These sorbents were characterized by an optical microscopy and a FTIR. Adsorption/desorption of cadmium (Cd2+) ions from aqueous solutions on these sorbents were investigated in batch equilibrium experiments by using an atomic absorption spectroscopy with a graphite furnace atomizer. The maximum cadmium adsorption on to the dye-attached microspheres (i.e., by complex formation) was about 18.3 mg Cd2+ ions/g polymer, which was observed at pH 6.8. While adsorption onto the plain poly(EGDMA–HEMA) microspheres (i.e., nonspecific adsorption) was about 0.93 mg Cd2+ ions/g polymer at the same conditions. More than 90% of the adsorbed cadmium was desorbed in 1 h by using 2M NaCl as an eluant. The resorption capacity of the sorbent did not significantly decrease during repeated sorption–desorption cycling. © 1996 John Wiley & Sons, Inc.  相似文献   

7.
Lysozyme adsorption onto Cibacron Blue F3GA attached and Cu(II) incorporated poly(2-hydroxyethyl methacrylate–ethylene glycol dimethacrylate) [poly(HEMA-EGDMA)] microspheres was investigated. The microspheres were prepared by suspension polymerization. Various amounts of Cibacron Blue F3GA were attached covalently onto the microspheres by changing the initial concentration of dye in the reaction medium. The microspheres with a swelling ratio of 65%, and carrying different amounts of dye (between 1.4 and 22.5 µmol/g−1) were used in the lysozyme adsorption studies. Lysozyme adsorption on these microspheres from aqueous solutions containing different amounts of lysozyme at different pH values was investigated in batch reactors. The lysozyme adsorption capacity of the dye–metal chelated microspheres (238.2 mg g−1) was greater than that of the dye-attached microspheres (175.1 mg g−1). The maximum lyzozyme adsorption capacities (qm) and the dissociation constant (kd) values were found to be 204.9 mg g−1 and 0.0715 mg ml−1 with dye-attached and 270.7 mg g−1 and 0.0583 mg ml−1 with dye–metal chelated microspheres, respectively. More than 90% of the adsorbed lysozyme were desorbed in 60 min in the desorption medium containing 0.5 M KSCN at pH 8.0 or 25 mM EDTA at pH 4.9. © 1999 Society of Chemical Industry  相似文献   

8.
In our study, a Zn(II) ion-imprinted polymer (ZnIP) and non-imprinted polymer (NIP) were synthesized via free-radical polymerization. 1-Vinylimidazole, ethylene glycol dimethacrylate, 2-hydroxyethylmethacrylate and 2,2′-azobisisobutyronitrile were used as functional, cross-linking monomers and free-radical initiator, respectively. The obtained polymer was characterized by various analytical methods (Fourier Transform Infrared Spectroscopy, Transmission Electron Microscopy, Wavelength Dispersive X-ray Fluorescence, UV VIS, thermal analysis). The sorption properties of ZnIP and NIP were evaluated after removal of Zn(II) ions from the polymer network. The optimum pH for adsorption was 7.0. The maximum adsorption capacity at the pH was 5.2 and 0.22 mg/g for ZnIP and NIP, respectively. To determine the selectivity, the polymer was equilibrated with the binary mixture of Zn(II) ions and the interfering ions [Cu(II), Ni(II) or Co(II)]. The relative selectivity of ZnIP was 22.57, 5.44 and 46.17 for Cu(II), Ni(II) and Co(II) ions, respectively. The proposed ZnIP sorbent was applied to determine the zinc ions in urine samples by Wavelength Dispersive X-ray Fluorescence.  相似文献   

9.
The preparation of zeolite X/chitosan (CS) hybrid microspheres for efficient removal of Cu(II) ions by an impregnation-gelation-hydrothermal synthesis technique is reported here. Characterizations by various techniques indicate that the microspheres show porous structures and intimate interaction between zeolite and CS. The adsorption experiments are performed to evaluate the adsorption capacity of zeolite X/CS hybrid microspheres and comparisons are made with binderless zeolite X microspheres, pure CS microspheres and mechanical mixed zeolite X/CS microspheres. The effects of Cu(II) solution concentration and the pH are investigated. The results indicate that zeolite X/CS hybrid microspheres with the zeolite content of 60 wt% show the highest adsorption capacity, which is 90 mg/g at the initial Cu(II) concentration of 10 mg/L and 150.4 mg/g at Cu(II) concentration of 500 mg/L. The adsorption capacity increases with increasing initial pH and reaches a maximum at pH 5.5 in the range of 0–6.0. The equilibrium adsorption data are well described by the Langmuir isotherm model, exhibiting a maximum adsorption capacity of 152.0 mg/g, and the kinetic data are well fitted with the pseudo-second-order equation. Complete removal of Cu(II) ions can be obtained even at very low concentrations. The microspheres show high adsorption capacity and efficiency for Cu(II) ions, exhibiting potential practical application in the treatment of water pollution of heavy metal ions.  相似文献   

10.
Lysozyme adsorption onto dye‐attached nonporous monosize poly(2‐hydroxyethyl‐methacrylate‐methylmethacrylate) [poly(HEMA‐MMA)] microspheres was investigated. Poly(HEMA‐MMA) microspheres were prepared by dispersion polymerization. The monochloro‐triazine dye, Cibacron Blue F3GA, was immobilized covalently as dye–ligand. These dye‐affinity microspheres were used in the lysozyme adsorption–desorption studies. The effect of initial concentration of lysozyme and medium pH on the adsorption efficiency of dye‐attached and metal‐chelated microspheres were studied in a batch reactor. Effect of Cu(II) chelation on lysozyme adsorption was also studied. The nonspecific adsorption of lysozyme on the poly(HEMA‐MMA) microspheres was 3.6 mg/g. Cibacron Blue F3GA attachment significantly increased the lysozyme adsorption up to 247.8 mg/g. Lysozyme adsorption capacity of the Cu(II) incorporated microspheres (318.9 mg/g) was greater than that of the Cibacron Blue F3GA‐attached microspheres. Significant amount of the adsorbed lysozyme (up to 97%) was desorbed in 1 h in the desorption medium containing 1.0M NaSCN at pH 8.0 and 25 mM EDTA at pH 4.9. In order to examine the effects of separation conditions on possible conformational changes of lysozyme structure, fluorescence spectrophotometry was employed. We conclude that dye‐ and metal‐chelate affinity chromatography with poly(HEMA‐MMA) microspheres can be applied for lysozyme separation without causing any significant changes and denaturation. Repeated adsorption/desorption processes showed that these novel dye‐attached monosize microspheres are suitable for lysozyme adsorption. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 115–124, 2000  相似文献   

11.
Ion‐imprinted chitosan (CS) microspheres (MIPs) were prepared with Cu(II) as a template and epichlorohydrin as a crosslinker for the selective separation of Cu(II) from aqueous solution. The microspheres showed a higher adsorption capacity and selectivity for the Cu(II) ions than nonimprinted chitosan microspheres (NMIPs) without a template. The results show that the adsorption of Cu(II) on the CS microspheres was affected by the initial pH value, initial Cu(II) concentration, and temperature. The kinetic parameters of the adsorption process indicated that the adsorption followed a second‐order adsorption process. Equilibrium experiments showed very good fits with the Langmuir isotherm equation for the monolayer adsorption process. The maximum sorption capacity calculated from the Langmuir isotherm was 201.66 mg/g for the Cu–MIPs and 189.51 mg/g for the NMIPs; these values were close to the experimental ones. The selectivity coefficients of Cu(II) and other metal ions on the NMIPs indicated a preference for Cu(II). © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

12.
Metal‐chelating membranes have advantages as adsorbents in comparison with conventional beads because they are not compressible and they eliminate internal diffusion limitations. The aim of this study was to explore in detail the performance of poly(2‐hydroxyethyl methacrylate–methacryloylamidohistidine) [poly(HEMA–MAH)] membranes for the removal of three toxic heavy‐metal ions—Cd(II), Pb(II), and Hg(II)—from aquatic systems. The poly(HEMA–MAH) membranes were characterized with scanning electron microscopy and 1H‐NMR spectroscopy. The adsorption capacity of the poly(HEMA–MAH) membranes for the selected heavy‐metal ions from aqueous media containing different amounts of these ions (30–500 mg/L) and at different pH values (3.0–7.0) was investigated. The adsorption capacity of the membranes increased with time during the first 60 min and then leveled off toward the equilibrium adsorption. The maximum amounts of the heavy‐metal ions adsorbed were 8.2, 31.5, and 23.2 mg/g for Cd(II), Pb(II), and Hg(II), respectively. The competitive adsorption of the metal ions was also studied. When the metal ions competed, the adsorbed amounts were 2.9 mg of Cd(II)/g, 14.8 mg of Pb(II)/g, and 9.4 mg of Hg(II)/g. The poly(HEMA–MAH) membranes could be regenerated via washing with a solution of nitric acid (0.01M). The desorption ratio was as high as 97%. These membranes were suitable for repeated use for more than three adsorption/desorption cycles with negligible loss in the adsorption capacity. The stability constants for the metal‐ion/2‐methacryloylamidohistidine complexes were calculated to be 3.47 × 106, 7.75 × 107, and 2.01 × 107 L/mol for Cd(II), Pb(II), and Hg(II) ions, respectively, with the Ruzic method. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 1213–1219, 2005  相似文献   

13.
《分离科学与技术》2012,47(6):901-910
A novel magnetic Pb(II) ion-imprinted polymer was prepared via surface ion-imprinting technique by using magnetic Fe3O4@SiO2 microspheres as supporter, Pb(II) as template ion, methacrylic acid and salicylaldoxime as monomers, and ethylene glycol dimethacrylate as crosslinker. The product was characterized by FT-IR, VSM, XRD, and SEM. The adsorption experiments showed that the imprinted polymer was employed successfully in comparison with non-imprinted polymer. When the temperature was in a range of 277 K to 291 K the maximum adsorption was about 81.83 mg/g with an optimal pH 6.0. Its relative selectivity coefficient values of Pb(II)/Cu(II), Pb(II)/Zn(II), and Pb(II)/Cd(II) were 2.60, 6.38, and 7.89 times greater than the ones of the magnetic non-imprinted polymer. The Langmuir adsorption model was more favorable for M-IIP than Freundlich or Temkin adsorption models. The Scatchard analysis suggested that M-IIP was processed with two kinds of binding sites with different affinity. Thermodynamic experiment showed that the adsorption was a spontaneous and endothermic process for Pb(II). The mechanism for Pb(II) adsorption on the imprinted polymer was also investigated.  相似文献   

14.
We investigated a new adsorbent system, Reactive Red 120 attached poly(2‐hydroxyethyl methacrylate ethylene dimethacrylate) [poly(HEMA–EDMA)] beads, for the removal of Ni2+ ions from aqueous solutions. Poly(HEMA–EDMA) beads were prepared by the modified suspension copolymerization of 2‐hydroxyethyl methacrylate and ethylene dimethacrylate. Reactive Red 120 molecules were covalently attached to the beads. The beads (150–250 μm), having a swelling ratio of 55% and carrying 25.5 μmol of Reactive Red 120/g of polymer, were used in the removal of Ni2+ ions. The adsorption rate and capacity of the Reactive Red 120 attached poly(HEMA–EDMA) beads for Ni2+ ions was investigated in aqueous media containing different amounts of Ni2+ ions (5–35 mg/L) and having different pH values (2.0–7.0). Very high adsorption rates were observed at the beginning, and adsorption equilibria were then gradually achieved in about 60 min. The maximum adsorption of Ni2+ ions onto the Reactive Red 120 attached poly(HEMA–EDMA) beads was 2.83 mg/g at pH 6.0. The nonspecific adsorption of Ni2+ ions onto poly(HEMA–EDMA) beads was negligible (0.1 mg/g). The desorption of Ni2+ ions was studied with 0.1M HNO3. High desorption ratios (>90%) were achieved. The intraparticle diffusion rate constants at various temperatures were calculated as k20°C = 0.565 mg/g min0.5, k30°C = 0.560 mg/g min0.5, and k40°C = 0.385 mg/g min0.5. Adsorption–desorption cycles showed the feasibility of repeated use of this novel adsorbent system. The equilibrium data fitted very well both Langmuir and Freundlich adsorption models. The pseudo‐first‐order kinetic model was used to describe the kinetic data. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100:5056–5065, 2006  相似文献   

15.
Metal chelating properties of Cibacron Blue F3GA‐derived poly(EGDMA‐HEMA) microbeads have been studied. Poly(EGDMA‐HEMA) microbeads were prepared by suspension copolymerization of ethylene glycol dimethacrylate (EGDMA) and hydroxy‐ethyl methacrylate (HEMA) by using poly(vinyl alcohol), benzoyl peroxide, and toluene as the stabilizer, the initiator, and the pore‐former, respectively. Cibacron Blue F3GA was covalently attached to the microbeads via the nucleophilic substitution reaction between the chloride of its triazine ring and the hydroxyl groups of the HEMA, under alkaline conditions. Microbeads (150–200 μm in diameter) with a swelling ratio of 55%, and carrying 16.5 μmol Cibacron Blue F3GA/g polymer were used in the adsorption/desorption studies. Adsorption capacity of the microbeads for the selected metal ions, i.e., Cu(II), Zn(II), Cd(II), Fe(III), and Pb(II) were investigated in aqueous media containing different amounts of these ions (5–200 ppm) and at different pH values (2.0–7.0). The maximum adsorptions of metal ions onto the Cibacron Blue F3GA‐derived microbeads were 0.19 mmol/g for Cu(II), 0.34 mmol/g for Zn(II), 0.40 mmol/g for Cd(II), 0.91 mmol/g for Fe(III), and 1.05 mmol/g for Pb(II). Desorption of metal ions were studied by using 0.1 M HNO3. High desorption ratios (up to 97%) were observed in all cases. Repeated adsorption/desorption operations showed the feasibility of repeated use of this novel sorbent system. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 1397–1403, 1999  相似文献   

16.
We prepared poly(ethylene glycol dimethacrylate–1‐vinyl‐1,2,4‐triazole) [poly(EGDMA–VTAZ)] beads (average diameter = 150–200 μm) by copolymerizing ethylene glycol dimethacrylate (EGDMA) with 1‐vinyl‐1,2,4‐triazole (VTAZ). The copolymer composition was characterized by elemental analysis and found to contain five EGDMA monomer units for each VTAZ monomer unit. The poly(EGDMA–VTAZ) beads had a specific surface area of 65.8 m2/g. Poly(EGDMA–VTAZ) beads were characterized by Fourier transform infrared spectroscopy, elemental analysis, surface area measurements, swelling studies, and scanning electron microscopy. Poly(EGDMA–VTAZ) beads with a swelling ratio of 84% were used for the heavy‐metal removal studies. The adsorption capacities of the beads for Cd(II), Hg(II), and Pb(II) were investigated in aqueous media containing different amounts of these ions (5–750 mg/L) and at different pH values (3.0–7.0). The maximum adsorption capacities of the poly(EGDMA–VTAZ) beads were 85.7 mg/g (0.76 mmol/g) for Cd(II), 134.9 mg/g (0.65 mmol/g) for Pb(II), and 186.5 mg/g (0.93 mmol/g) for Hg(II). The affinity order toward triazole groups on a molar basis was observed as follows: Hg(II) > Cd(II) > Pb(II). pH significantly affected the adsorption capacity of the VTAZ‐incorporated beads. The equilibrium data were well fitted to the Redlich–Peterson isotherm. Consideration of the kinetic data suggested that chemisorption processes could have been the rate‐limiting step in the adsorption process. Regeneration of the chelating‐beads was easily performed with 0.1M HNO3. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 4276–4283, 2006  相似文献   

17.
An improved suspension polymerization method for preparation of the magnetic poly(methyl acrylate) microspheres (mPMA‐DVB) was investigated. Through subsequent reaction with methyl acrylate (MA) and ethylenediamine (EDA), the magnetic poly(methyl acrylate) microspheres with dendron surface was obtained, and the magnetic poly(methyl acrylate) microspheres with dendron surface reacted with carbon bisulfide and sodium hydroxide to create sodium dithiocarbamate. Following, the resultant magnetic microspheres with dendron surface modification were used to adsorb Au(III) from aqueous solution. The result showed that the capacity of amino groups on the surface of the mPMA microspheres increased from 1.67 mmol/g for the magnetic polymer microspheres with G0 dendron to 4.35 mmol/g with G3 dendron, and the adsorption capacity rose from 0.1981 g/g with G0 dendron to 0.7853 g/g with G3 dendron. The effects of solution pH, the adsorption temperature, the adsorption time, and the initial concentration of Au(III) on the adsorption of Au(III) were studied, the optimum pH for Au(III) adsorption was found at pH = 1, the adsorption capacity achieved the maximum in 60 min, and the adsorption process was endothermic reaction and conformed to pseudo‐second‐order kinetic models. Furthermore, the adsorption process was in accordance with the Langmuir model. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

18.
N‐Methacryloyl‐(L )‐histidine methyl ester (MAH) was synthesized from metharyloyl chloride and histidine. Spherical beads with an average size of 150–250 μm were obtained by the suspension polymerization of ethylene glycol dimethacrylate and MAH in an aqueous dispersion medium. Magnetic poly(ethylene glycol dimethacrylate‐coN‐Methacryloyl‐(L )‐histidine methyl ester) [m‐p(EGDMA‐co‐MAH)] microbeads were characterized with swelling tests, electron spin resonance, elemental analysis, and scanning electron microscopy. The specific surface area of the beads was 80.1 m2/g. m‐p(EGDMA‐co‐MAH) microbeads with a swelling ratio of 40.2% and 43.9 μmol of MAH/g were used for the adsorption of bovine serum albumin (BSA) in a batch system. The Cu(II) concentration was 4.1 μmol/g. The adsorption capacity of BSA on the Cu(II)‐incorporated beads was 19.2 mg of BSA/g. The BSA adsorption first increased with the BSA concentration and then reached a plateau, which was about 19.2 mg of BSA/g. The maximum adsorption was observed at pH 5.0, which was the isoelectric point of BSA. The BSA adsorption increased with decreasing temperature, and the maximum adsorption was achieved at 4°C. High desorption ratios (>90% of the adsorbed BSA) were achieved with 1.0M NaSCN (pH 8.0) in 30 min. The nonspecific adsorption of BSA onto the m‐p(EGDMA‐co‐MAH) beads was negligible. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 2669–2677, 2004  相似文献   

19.
Atactic polystyrene (PS) was chemically modified with maleic (MAH), succinic (SAH), and phtalic (PhAH) anhydrides. Styrene was copolymerized with acrylic (AA) and methacrylic acids (MA). Amount of carboxyl groups (%) bound to polymers was determined in the range of 6.9–25.9. Different modified polystyrenes (MPS) and styrene copolymers were used in the experiments to study Cu(II) and Zn(II) ions adsorption probability and their comparison. Sorption capacity of the polymers for the metal ions were investigated in aqueous media containing different amounts of these ions (5–40 mg/L) and at different pH values (2.0–6.0). Adsorption behavior of heavy metal ions could be modeled using both the Langmuir and Freundlich isotherms. It was found that the adsorption capacity is highest at pH value of 6, whereas it decreases as the pH value decreases at temperature 25°C ± 1°C for 240 min. The results obtained from the adsorption capacity experiments for Cu(II) and Zn(II) ions were 3.47–5.45 and 5.42–6.85 mg/g, respectively. The affinity order of polymers for both metal ions was observed as follows: SMAC > SAAC > MPS with MAH > MPS with SAH > MPS with PhAH. The maximum adsorption capacities of SMAC were 6.85mg/g for Zn(II) and 5.45 mg/g for Cu(II). © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

20.
In the work, poly(ethylene terephthalate) (PET) fibers were grafted with 4‐vinyl pyridine (4‐VP) monomer using benzoyl peroxide (Bz2O2) as initiator in aqueous media. The removal of Hg(II) ions from aqueous solution by the reactive fiber was examined by batch equilibration technique. Effects of various parameters such as pH, graft yield, adsorption time, initial ion concentration, and adsorption temperature on the adsorption amount of metal ions onto reactive fibers were investigated. The optimum pH of Hg(II) was found 3. The maximum adsorption capacity was found as 137.18 mg g?1. Moreover such parameters as the adsorption kinetics, the adsorption isotherm, desorption time and the selectivity of the reactive fiber were studied. The adsorption kinetics is in better agreement with pseudo‐first order kinetics, and the adsorption data are good fit with Freundlich isotherms. The grafted fiber is more selective for Hg(II) ions in the mixed solution of Hg(II)‐Ni(II), Hg(II)‐Zn(II), and Hg(II)‐Ni(II)‐Zn(II) at pH 3. Adsorbed Hg(II) ions were easily desorbed by treating with 1M HNO3 at room temperature. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号